Curve reconstruction implementation - image-processing

Last couple of days I spent on searching for curve reconstruction implementations, and found none - not as a library nor as a tool.
To describe my problem.
My main concern are contours with gaps:
From papers I've read in the meantime, I guess solution will require usage of Delaunay triangulation, and the method referenced most seems to be described in 1997 paper "The Crust and the β-Skeleton: Combinatorial Curve Reconstruction
"
Can someone point me to a curve reconstruction implementation, that can help me solve this problem?

Algorithm is implemented in CGAL. Example implementation can be seen in C++ in CGAL ipelets demo package. Even more compiling the demo allows user applying the algorithm in ipe GUI application:
In above example I selected just part of my image, as bottom lines did not meet necessary requirements, so crust can't be applied on that part until corrected. Further, image has to be sampled, as can be noticed.
If no one provides another implementation example, I'll mark my answer as correct after couple of days.

Delaunay triangulation uses discretized curve, and with that loses information. That can cause strange problems where you don't expect them. In your example, probably middle part on lower boundary would cause a problem.
In this situations maybe it is good to collect relevant information from model and try to make a matching.
Something like, for each end point collect contour derivative in a neighbourhood. Than find all end points to which that end point can be connected, with approximative derivative direction and that joint doesn't cross other line. It is possible to give weight to possible connection by joint distance and deviation from local derivative. Giving weight defines weighted graph with possible end point connections. Maximal edge matching in that graph would be good solution to a problem.

There are quite a few ways to solve this;
You could simply write a worm that follows the curves and when you reach the end of one, you take your current direction vector along with gradient and extrapolate it forward. Find all the other endpoints that would best fit and then score them; Reconnect up with the one with the highest score. Simple, and prone to problems if its more than a simple break up.
A hierarchical waterfall method might be interesting
There are threshold methods in waterfall (and level-set methods) that can be used to detect these gaps and fill them in.

Related

How to find the matched SIFT features that are spatially consistent?

I have extracted DenseSIFT from the query and database image and quantized by kmeans using VLFeat. The challenge is to find those SIFT features that quantized to the same visual words and be spatially consistent (have a similar position to object centers). I have tried few techniques:
using FLANN() on the SIFT (normal SIFT) coordinates on both query and database image and find the nearest neighbor and then comparing the visual words (NOTE: this gave few points that did not work).
Using Coherent-Point-Drift (CPD) on SIFT coordinates to find the matched points (I am not sure about this whether it is a right solution or not).
I am struggling with it for many days, and I hope experts can guide me with this. What are the possible solutions or algorithms that I can use for solving this?
Neither of those two methods you mentioned achieve what you want do. The answer depends on the object in your pictures. If it has mostly flat faces, then you can rely on estimating the homography, see this tutorial.
If that's not case then can use the epipolar constraint to remove outliers / get geometrically consistent matches, see this tutorial. There are some other ways to achieve this if the speed is of importance in your application.

Grouping points that represent lines

I am looking for an Algorithm that is able to solve this problem.
The problem:
I have the following set points:
I want to group the points that represents a line (with some epsilon) in one group.
So, the optimal output will be something like:
Some notes:
The point belong to one and only line.
If the point can be belong to two lines, it should belong to the strongest.
A line is considered stronger that another when it has more belonging points.
The algorithm should not cover all points because they may be outliers.
The space contains many outliers it may hit 50% of the the total space.
Performance is critical, Real-Time is a must.
The solutions I found till now:
1) Dealing with it as clustering problem:
The main drawback of this method is that there is no direct distance metric between points. The distance metric is on the cluster itself (how much it is linear). So, I can not use traditional clustering methods and I have to (as far as I thought) use some kind of, for example, clustering us genetic algorithm where the evaluation occurs on the while cluster not between two points. I also do not want to use something like Genetic Algorithm While I am aiming real-time solution.
2) accumulative pairs and then do clustering:
While It is hard to make clustering on points directly, I thought of extracting pairs of points and then try to cluster them with others. So, I have a distance between two pairs that can represents the linearity (two pairs are in real 4 points).
The draw-back of this method is how to choose these pairs? If I depend on the Ecledian-Distance between them, it may not be accurate because two points may be so near to each other but they are so far from making a line with others.
I appreciate any solution, suggest, clue or note. Please you may ask about any clarification.
P.S. You may use any ready OpenCV function in thinking of any solution.
As Micka advised, I used Sequential-RANSAC to solve my problem. Results were fantastic and exactly as I want.
The idea is simple:
Apply RANSAC with fit-line model on the points.
Delete all points that are in-liers of the output of RANSAC.
While there are 2 or more points go to 1.
I have implemented my own fit-line RANSAC but unfortnantly I can not share code because it belongs to the company I work for. However, there is an excellent fit-line RANSAC here on SO that was implemented by Srinath Sridhar. The link of the post is : RANSAC-like implementation for arbitrary 2D sets.
It is easy to make a Sequential-RANSAC depending on the 3 simple steps I mentioned above.
Here are some results:

What is the best method to template match a image with noise?

I have a large image (5400x3600) that has multiple CCTVs that I need to detect.
The detection takes lot of time (4-7 minutes) with rotation. But it still fails to resolve certain CCTVs.
What is the best method to match a template like this?
I am using skImage - openCV is not an option for me, but I am open to suggestions on that too.
For example: in the images below, the template is correct matched with the second image - but the first image is not matched - I guess due to the noise created by the text "BLDG..."
Template:
Source image:
Match result:
The fastest method is probably a cascade of boosted classifiers trained with several variations of your logo and possibly a few rotations and some negative examples too (non-logos). You have to roughly scale your overall image so the test and training examples are approximately matched by scale. Unlike SIFT or SURF that spend a lot of time in searching for interest points and creating descriptors for both learning and searching, binary classifiers shift most of the burden to a training stage while your testing or search will be much faster.
In short, the cascade would run in such a way that a very first test would discard a large portion of the image. If the first test passes the others will follow and refine. They will be super fast consisting of just a few intensity comparison in average around each point. Only a few locations will pass the whole cascade and can be verified with additional tests such as your rotation-correlation routine.
Thus, the classifiers are effective not only because they quickly detect your object but because they can also quickly discard non-object areas. To read more about boosted classifiers see a following openCV section.
This problem in general is addressed by Logo Detection. See this for similar discussion.
There are many robust methods for template matching. See this or google for a very detailed discussion.
But from your example i can guess that following approach would work.
Create a feature for your search image. It essentially has a rectangle enclosing "CCTV" word. So the width, height, angle, and individual character features for matching the textual information could be a suitable choice. (Or you may also use the image having "CCTV". In that case the method will not be scale invariant.)
Now when searching first detect rectangles. Then use the angle to prune your search space and also use image transformation to align the rectangles in parallel to axis. (This should take care of the need for the rotation). Then according to the feature choosen in step 1, match the text content. If you use individual character features, then probably your template matching step is essentially a classification step. Otherwise if you use image for matching, you may use cv::matchTemplate.
Hope it helps.
Symbol spotting is more complicated than logo spotting because interest points work hardly on document images such as architectural plans. Many conferences deals with pattern recognition, each year there are many new algorithms for symbol spotting so giving you the best method is not possible. You could check IAPR conferences : ICPR, ICDAR, DAS, GREC (Workshop on Graphics Recognition), etc. This researchers focus on this topic : M Rusiñol, J Lladós, S Tabbone, J-Y Ramel, M Liwicki, etc. They work on several techniques for improving symbol spotting such as : vectorial signatures, graph based signature and so on (check google scholar for more papers).
An easy way to start a new approach is to work with simples shapes such as lines, rectangles, triangles instead of matching everything at one time.
Your example can be recognized by shape matching (contour matching), much faster than 4 minutes.
For good match , you require nice preprocess and denoise.
examples can be found http://www.halcon.com/applications/application.pl?name=shapematch

What is the particular implementation of Probabilistic Hough Transform in OpenCV?

Does anyone know the particular algorithm for Probabilistic Hough Transform in the OpenCV's implementation? I mean, is there a reference paper or documentation about the algorithm?
To get the idea, I can certainly look into the source code, but I wonder if there is any documentation about it. -- it's not in the source code's comments (OpenCV 1.0).
Thank you!
-Jin
The OpenCV documentation states that the algoithm is based on "Robust detection of lines using the progressive probabilistic hough transform", by J Matas et al. This is quite different from the RHT described on wikipedia.
The paper does not seem to be freely available on the internet, but you can purcahse it from Elsevier
The source code for HoughLinesProbabilistic in OpenCV 2.4.4 contains inline comments that explain the various steps involved.
https://github.com/Itseez/opencv/blob/master/modules/imgproc/src/hough.cpp
The article Line Detection by Hough transformation in the section 6 could be useful.
Here is a fairly concise paper by Matas et.al. that describes the approach, and as others mentioned, it is indeed quite different from Randomized Hough Transform:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.2186&rep=rep1&type=pdf
(Not sure for how long this link is going to be valid though. It's on/from citeseer, wouldn't expect it to just vanish tomorrow, but who knows...)
I had quick look at the implementation icvHoughLinesProbabilistic() in hough.cpp, because I'll be using it :-) It seems fairly straightforward, anyway, my primary interest was whether it does some least squares line-fitting in the end - it doesn't, which is fine. It just means, if it is desired to get accurate line-segments, one may want to use the start/end-point and implied line-parameters as returned by OpenCV to select related points from the overall point-set. I'd be using a fairly conservative distance-threshold in the first place, and run RANSAC/MSAC on these points with a smaller threshold. Finally, fit a line to the inlier-set as usual, e.g. using OpenCV's cvFitLine().
Here's an article about the Randomized Hough Transform which i believe to be the same as the "probabilistic Hough transform" used in OpenCV
http://en.wikipedia.org/wiki/Randomized_Hough_Transform
basically, you dont fill up the accumulator for all points but choose a set of points with a certain criteria to fill up the Hough transform.
The consequence is that sometimes, you could miss the actual line if there wasnt eenough points ot start with. I guess you'd want to use this if you have somewhat linear structures so that most points would be redundant.
reference no 2: L. Xu, E. Oja, and P. Kultanan, "A new curve detection method: Randomized Hough transform (RHT)", Pattern Recog. Lett. 11, 1990, 331-338.
I also read about some pretty different approaches where the algorithms would take two points and compute the point in the middle of those two points. if the point is an edge point, then we'd accumulate the bin for that line. This is apparently extremely fast but you'd assume a somewhat non-sparse matrix as you could easily miss lines if there wasnt enough edge points to start with.

How to interpolate between data points?

I am currently developing a piece of software using opencv and qt that plots data points. I need to be able fill in an image from incomplete data. I want to interpolate between the points I have. Can anyone recommend a library or function that could help me. I thought maybe the opencv reMap method but I can't seem to get that to work.
The data is a 2-d matrix of intensity values. I want to create an image of some sort. Its a school project.
Interpolation is a complex subject. There are infinitely many ways to interpolate a set of points, and this assuming that you truly do wish to do interpolation, and not smoothing of any sort. (An interpolant reproduces the original data points exactly.) And of course, the 2-d nature of this problem makes things more difficult.
There are several common schemes for interpolation of scattered data in 2-d. Actually, for those who have access to it, a very nice paper is available (Richard Franke, "Scattered data interpolation: Tests of some methods", Mathematics of Computation, 1982.)
Perhaps the most common method used is based on a triangulation of your data. Merely build a triangulation of the domain from your data points. Then any point inside the convex hull of the data must lie inside exactly one of the triangles, or it will be on a shared edge. This allows you to interpolate linearly inside the triangle. If you are using MATLAB, then the function griddata is available for this express purpose.)
The problem when trying to populate a complete rectangular image from scattered points is that very likely the data does not extend to the 4 corners of the array. In that event, a triangulation based scheme will fail, since the corners of the array do not lie inside the convex hull of the scattered points. An alternative then is to use "radial basis functions" (often abbreviated RBF). There are many such schemes to be found, including Kriging, when used by the geostatistics community.
http://en.wikipedia.org/wiki/Kriging
Finally, inpainting is the name for a scheme of interpolation where elements are given in an array, but where there are missing elements. The name obviously refers to that done by an art conservator who needs to repair a tear or rip in a valuable piece of artwork.
http://en.wikipedia.org/wiki/Inpainting
The idea behind inpainting is typically to formulate a boundary value problem. That is, define a partial differential equation on the region where there is a hole. Using the known boundary values, fill in the hole by solving the PDE for the unknown elements. This can be computationally intensive if there are a huge number of unknown elements, since it typically requires the solution of at least a massive sparse system of linear equations. If the PDE is a nonlinear one, then it becomes a more intensive problem yet. A simple, reasonably good choice for the PDE is the Laplacian, which results in a linear system that extrapolates well. Again, I can offer a solution for a MATLAB user.
http://www.mathworks.com/matlabcentral/fileexchange/4551
Better choices for the PDE may come from nonlinear PDEs. Once such is the Navier/Stokes equation. It is well suited to modeling the types of surfaces typically seen, but it is also more difficult to deal with. As in many facets of life, you get what you pay for.
Phew! Big subject.
The "right" answer depends a lot on your problem domain and various details of what you're doing.
Interpolating in more than 1 dimension requires making some choices. I'll assume that you are plotting on a regular grid, but that some of your grid points have no data. Big question: are the missing points sparse, or do they make big blobs?
You can't add information, so you're just trying to establish something that will look OK.
Conceptually simple suggestion (but the implementation may be some work):
For each region on missing data, identify all the edge points. That is find the x's in this figure
oooxxooo
oox..xoo
oox...xo
ox..xxoo
oox.xooo
oooxoooo
where the .'s are the points missing data, and the x's and o's have data (for a single missing point, this will be the four nearest neighbors). Fill in each missing data point with an average over the edge points around this blob. To make it smooth, weight each point by 1/d where d is the taxidriver distance (delta x + delta y) between the two points..
From before we had any details:
In the absence of that kind of information, have you tried straight ahead linear interpolation? If your data is reasonably dense this might do it for you, and it is simple enough to code in-line when you need it.
Next step is usually a cubic spline, but for that you'll probably want to grab an existing implementation.
When I need something more powerful than a quick linear interpolation, I usually use ROOT (and pick one of the TSpline classes), but this may be more overhead than you need.
As noted in the comments, ROOT is big, and while it is fast, it does try to force you to do things the ROOT way, so it can have a big effect on your program.
A linear interpolation between (or indeed extrapolation from) two points (x1, y1) and (x2, y2) gives you
y_i = (x_i-x1)*(y2-y1)/(x2-x1)
Considering this is a simple school project, probably the easiest interpolation technique to implement is the "Nearest Neighbors"
For each missing data point you find the nearest "filled" data point and use that as the value.
If you want to improve the retults a little bit more, then you can lets say, find K nearest data points, and use their weighted average as the value of your missing data point.
the weight could be proportional to the distance of the point from the missing data point.
There are zillion other techniques, but nearest neighbor is probably the easiest to implement.
if I understand that your need is as follows.
I think you have a subset of x,y,Intensity for a dimension of L by W and you want to fill for all X ranging from 0 to L and Y ranging from 0 to W.
If this is your question, then solution is to get other intensities by using Filters.
I think Bayer filter or Gaussian filter would do the job for you.
You can google these filters and you will get answers to implement.
Best of luck.

Resources