I'm going through the Write yourself a scheme in 48 hours tutorial.
symbol :: Parser Char
symbol = oneOf "!#$%&|*+-/:<=>?#^_~"
This is great for symbols, but what if I have a list of keywords? (i.e. struct, int)
can oneOf be adapted to lists? This is ideally what I want, depicted below.
keywords :: Parser String
keywords = oneOf ["struct","int",..etc]
Or should I import Text.Parsec.Char and try to mapM string over the list of keywords?
I'm attempting to tokenize and just wanted to know what best practices were from others who have gone down this road.
The docs say to use something like this:
divOrMod = string "div"
<|> string "mod"
http://hackage.haskell.org/packages/archive/parsec/3.0.0/doc/html/Text-Parsec-Char.html
The general form of this is the choice combinator, which has the following type:
choice :: Stream s m t => [ParsecT s u m a] -> ParsecT s u m a
Basically, you give it a list of parsers, and it tries them in order until one succeeds. choice is implemented using (<|>), so it's the same as that approach.
In your case, to match a list of keywords but no other parsers, you can just map string over a list of Strings and then use choice on that.
On the other hand, mapM string would do something entirely different--it would expect all of the parsers to succeed in order.
Related
I'm taking a Haskell course at school, and I have to define a Logical Proposition datatype in Haskell. Everything so far Works fine (definition and functions), and i've declared it as an instance of Ord, Eq and show. The problem comes when I'm required to define a program which interacts with the user: I have to parse the input from the user into my datatype:
type Var = String
data FProp = V Var
| No FProp
| Y FProp FProp
| O FProp FProp
| Si FProp FProp
| Sii FProp FProp
where the formula: ¬q ^ p would be: (Y (No (V "q")) (V "p"))
I've been researching, and found that I can declare my datatype as an instance of Read.
Is this advisable? If it is, can I get some help in order to define the parsing method?
Not a complete answer, since this is a homework problem, but here are some hints.
The other answer suggested getLine followed by splitting at words. It sounds like you instead want something more like a conventional tokenizer, which would let you write things like:
(Y
(No (V q))
(V p))
Here’s one implementation that turns a string into tokens that are either a string of alphanumeric characters or a single, non-alphanumeric printable character. You would need to extend it to support quoted strings:
import Data.Char
type Token = String
tokenize :: String -> [Token]
{- Here, a token is either a string of alphanumeric characters, or else one
- non-spacing printable character, such as "(" or ")".
-}
tokenize [] = []
tokenize (x:xs) | isSpace x = tokenize xs
| not (isPrint x) = error $
"Invalid character " ++ show x ++ " in input."
| not (isAlphaNum x) = [x]:(tokenize xs)
| otherwise = let (token, rest) = span isAlphaNum (x:xs)
in token:(tokenize rest)
It turns the example into ["(","Y","(","No","(","V","q",")",")","(","V","p",")",")"]. Note that you have access to the entire repertoire of Unicode.
The main function that evaluates this interactively might look like:
main = interact ( unlines . map show . map evaluate . parse . tokenize )
Where parse turns a list of tokens into a list of ASTs and evaluate turns an AST into a printable expression.
As for implementing the parser, your language appears to have similar syntax to LISP, which is one of the simplest languages to parse; you don’t even need precedence rules. A recursive-descent parser could do it, and is probably the easiest to implement by hand. You can pattern-match on parse ("(":xs) =, but pattern-matching syntax can also implement lookahead very easily, for example parse ("(":x1:xs) = to look ahead one token.
If you’re calling the parser recursively, you would define a helper function that consumes only a single expression, and that has a type signature like :: [Token] -> (AST, [Token]). This lets you parse the inner expression, check that the next token is ")", and proceed with the parse. However, externally, you’ll want to consume all the tokens and return an AST or a list of them.
The stylish way to write a parser is with monadic parser combinators. (And maybe someone will post an example of one.) The industrial-strength solution would be a library like Parsec, but that’s probably overkill here. Still, parsing is (mostly!) a solved problem, and if you just want to get the assignment done on time, using a library off the shelf is a good idea.
the read part of a REPL interpreter typically looks like this
repl :: ForthState -> IO () -- parser definition
repl state
= do putStr "> " -- puts a > character to indicate it's waiting for input
input <- getLine -- this is what you're looking for, to read a line.
if input == "quit" -- allows user to quit the interpreter
then do putStrLn "Bye!"
return ()
else let (is, cs, d, output) = eval (words input) state -- your grammar definition is somewhere down the chain when eval is called on input
in do mapM_ putStrLn output
repl (is, cs, d, [])
main = do putStrLn "Welcome to your very own interpreter!"
repl initialForthState -- runs the parser, starting with read
your eval method will have various loops, stack manipulations, conditionals, etc to actually figure out what the user inputted. hope this helps you with at least the reading input part.
This question already has answers here:
Generate parser that runs a received parser on the output of another parser and monadically joins the results
(2 answers)
Closed 5 years ago.
I use (abuse) parsers to do some string transformation e.g. normalizeWS :: Parser String removes duplicate whitespace and normalizeCase maps specific strings to lower case. I use parsers because the input data has some structure for example literate strings have to be left untransformed. Is there an elegant way to feed the output of one parser as input to the next and thus form a transformation pipeline? Something in the vein of normalizeWS . normalizeCase (which of course doesnt work)?
Many thanks in advance!
I solved the problem using this approach ... maybe there is a more elegant way
preprocessor :: Parser String
preprocessor = normalizeCase `feeds` expandKettensatz `feeds` normalizeWs
feeds :: Parser String -> Parser String -> Parser String
feeds p1 p2 = do
s <- p1
setInput s
p2
If you have functions like
normalizeWhitespace :: Stream s m Char => ParsecT s u m String
normalizeCase :: Stream s m Char => Set String -> Parsec s u m String
You could chain them together using runParser and >>=:
runBoth :: Stream s Identity Char => Set String -> SourceName -> s -> Either ParseError String
runBoth wordSet src input = do
input <- runParser normalizeWhitespace () src input
runParser (normalizeCase wordSet) () src input
But this doesn't give you a parser that you can chain together with other parsers.
This isn't terribly surprising, as parser composition in Parsec is all about
composing parsers that operate on the same stream, whereas these operate on
different streams.
Having multiple different streams is pretty common too - using the output of a tokenization or lexing
pass as input to parsing can make the process easier
to understand, but Parsec is a little easier to use out of the box as a direct parser (without
lexing/tokenization).
This question is related to both Parsec and uu-parsinglib. When we write parser combinators, they process characters streams from compiler. Is it somehow possible to parse a character and put it back (or return another character back) to the input stream?
I want for example to parse input "test + 5", parse the t, e, s, t and after recognition of test pattern, put for example v character back into the character stream, so while continuating the parsing process we are matching against v + 5
I do not want to use this in any particular case for now - I want to deeply learn the possibilities.
I'm not sure if it's possible with these parsers directly, but in general you can accomplish it by combining parsers with some streaming that allows injecting leftovers.
For example, using attoparsec-conduit you can turn a parser into a conduit using
sinkParser :: (AttoparsecInput a, MonadThrow m)
=> Parser a b -> Consumer a m b
where Consumer is a special kind of conduit that doesn't produce any output, only receives input and returns a final value.
Since conduits support leftovers, you can create a helper method that converts a parser that optionally returns a value to be pushed into the stream into a conduit:
import Data.Attoparsec.Types
import Data.Conduit
import Data.Conduit.Attoparsec
import Data.Functor
reinject :: (AttoparsecInput a, MonadThrow m)
=> Parser a (Maybe a, b) -> Consumer a m b
reinject p = do
(lo, r) <- sinkParser p
maybe (return ()) leftover lo
return r
Then you convert standard parsers to conduits using sinkParser and these special parsers using reinject, and then combine conduits instead of parsers.
I think the simplest way to archive this is to build a multi-layered parser. Think of a lexer + parser combination. This is a clean approach to this problem.
You have to separate the two kind of parsing. The search-and-replace parsing goes to the first parser and the build-the-AST parsing to the second. Or you can create an intermediate token representation.
import Text.Parsec
import Text.Parsec.String
parserLvl1 :: Parser String
parserLvl1 = many (try (string "test" >> return 'v') <|> anyChar)
parserLvl2 :: Parser Plus
parserLvl2 = do text1 <- many (noneOf "+")
char '+'
text2 <- many (noneOf "+")
return $ Plus text1 text2
data Plus = Plus String String
deriving Show
wholeParse :: String -> Either ParseError Plus
wholeParse source = do res1 <- parse parserLvl1 "lvl1" source
res2 <- parse parserLvl2 "lvl2" res1
return res2
Now you can parse your example. wholeParse "test+5" results in Right (Plus "v" "5").
Possible variations:
Create a class and an instance for combining wrapped parser stages. (Possibly carrying parser state.)
Create an intermediate representation, a stream of tokens
This is easily done in uu-parsinglib using the pSwitch function. But the question is why you want to do so? Because the v is missing from the input? In that case uu-parsinglib will perform error correction automatically so you do not need something like this. Otherwise you can write
pSwitch :: (st1 -> (st2, st2 -> st1)) -> P st2 a -> P st1 a
pInsert_v = pSwitch (\st1 -> (prepend v st2, id) (pSucceed ())
It depends on your actual state type how the v is actually added, so you will have to define the function prepend yourself. I do not know e.g. how such an insertion would influence the current position in the file etc.
Doaitse Swierstra
Using Parsec, I'm able to write a function of type String -> Maybe MyType with relative ease. I would now like to create a Read instance for my type based on that; however, I don't understand how readsPrec works or what it is supposed to do.
My best guess right now is that readsPrec is used to build a recursive parser from scratch to traverse a string, building up the desired datatype in Haskell. However, I already have a very robust parser who does that very thing for me. So how do I tell readsPrec to use my parser? What is the "operator precedence" parameter it takes, and what is it good for in my context?
If it helps, I've created a minimal example on Github. It contains a type, a parser, and a blank Read instance, and reflects quite well where I'm stuck.
(Background: The real parser is for Scheme.)
However, I already have a very robust parser who does that very thing for me.
It's actually not that robust, your parser has problems with superfluous parentheses, it won't parse
((1) (2))
for example, and it will throw an exception on some malformed inputs, because
singleP = Single . read <$> many digit
may use read "" :: Int.
That out of the way, the precedence argument is used to determine whether parentheses are necessary in some place, e.g. if you have
infixr 6 :+:
data a :+: b = a :+: b
data C = C Int
data D = D C
you don't need parentheses around a C 12 as an argument of (:+:), since the precedence of application is higher than that of (:+:), but you'd need parentheses around C 12 as an argument of D.
So you'd usually have something like
readsPrec p = needsParens (p >= precedenceLevel) someParser
where someParser parses a value from the input without enclosing parentheses, and needsParens True thing parses a thing between parentheses, while needsParens False thing parses a thing optionally enclosed in parentheses [you should always accept more parentheses than necessary, ((((((1)))))) should parse fine as an Int].
Since the readsPrec p parsers are used to parse parts of the input as parts of the value when reading lists, tuples etc., they must return not only the parsed value, but also the remaining part of the input.
With that, a simple way to transform a parsec parser to a readsPrec parser would be
withRemaining :: Parser a -> Parser (a, String)
withRemaining p = (,) <$> p <*> getInput
parsecToReadsPrec :: Parser a -> Int -> ReadS a
parsecToReadsPrec parsecParser prec input
= case parse (withremaining $ needsParens (prec >= threshold) parsecParser) "" input of
Left _ -> []
Right result -> [result]
If you're using GHC, it may however be preferable to use a ReadPrec / ReadP parser (built using Text.ParserCombinators.ReadP[rec]) instead of a parsec parser and define readPrec instead of readsPrec.
Say I have two languages (A & B). My goal is to write some type of program to convert the syntax found in A to the equivalent of B. Currently my solution has been to use Haskell's Parsec to perform this task. As someone who is new to Haskell and functional programming for that matter however, finding just a simple example in Parsec has been quite difficult. The examples I have found on the web are either incomplete examples (frustrating for a new Haskell programmer) or too much removed from my goal.
So can someone provide me with an amazingly trivial and explicit example of using Parsec for something related to what I'd like to achieve? Or perhaps even some tutorial that parallels my goal as well.
Thanks.
Consider the following simple grammar of a CSV document (In ABNF):
csv = *crow
crow = *(ccell ',') ccell CR
ccell = "'" *(ALPHA / DIGIT) "'"
We want to write a converter that converts this grammar into a TSV (tabulator separated values) document:
tsv = *trow
trow = *(tcell HTAB) tcell CR
tcell = DQUOTE *(ALPHA / DIGIT) DQUOTE
First of all, let's create an algebraic data type that descibes our abstract syntax tree. Type synonyms are included to ease understandment:
data XSV = [Row]
type Row = [Cell]
type Cell = String
Writing a parser for this grammar is pretty simple. We write a parser as if we would describe the ABNF:
csv :: Parser XSV
csv = XSV <$> many crow
crow :: Parser Row
crow = do cells <- ccell `sepBy` (char ',')
newline
return cells
ccell :: Parser Cell
ccell = do char '\''
content <- many (digit <|> letter)
char '\''
return content
This parser uses do-notation. After a do, a sequence of statements follows. For parsers, these statements are simply other parsers. One can use <- to bind the result of a parser. This way, one builds a big parser by chaining multiple smaller parsers. To obtain interesting effects, one can also combine parser using special combinators (such as a <|> b, which parses either a or b or many a, which parses as many as as possible). Please be aware that Parsec does not backtrack by default. If a parser might fail after consuming characters, prefix it with try to enable backtracking for one instance. try slows down parsing.
The result is a parser csv that parses our CSV document into an abstract syntax tree. Now it is easy to turn that into another language (such as TSV):
xsvToTSV :: XSV -> String
xsvToTSV xst = unlines (map toLines xst) where
toLines = intersperse '\t'
Connecting these two things one gets a conversion function:
csvToTSV :: String -> Maybe String
csvToTSV document = case parse csv "" document of
Left _ -> Nothing
Right xsv -> xsvToTSV xsv
And that is all! Parsec has lots of other functions to build up extremely sophisticated parsers. The book Real World Haskell has a nice chapter about parsers, but it's a little bit outdated. Most of that is still true, though. If you have further questions, feel free to ask.