Letting 'every process run until it is blocked' on an Erlang node - erlang

(Also available on Erlang's mailing list.)
Is it possible to write a function that waits for every process running on an Erlang node to reach a point where it is blocked, waiting for a message?
The function should return only when every process is waiting for a message that has not yet been sent to it. Assume that no process is in a time-related suspension (receive with an after clause, timer-related operations etc). The process running this function is, of course, excluded.
Obviously wrong answer:
erlang:yield/0: This gives a chance to every other process to run, but not necessarily until it is blocked.

Not 100% correct approach:
only_one_not_waiting() ->
Running =
[P || P <- processes(), process_info(P, status) =/= {status, waiting}],
length(Running) == 1
end.
everyone_blocked() ->
case only_one_not_waiting() of
true -> ok;
false -> everyone_blocked()
end.
Ignoring timers, running only_one_not_waiting/0 repeatedly until it returns true (as everyone_blocked/0 does) should indicate the desired system state, if this state is eventually reached.
However I am not sure how much trust one should put on the return value of process_info(P, status).

Related

Erlang: Functions work in shell but not in YAWS

My sole method of debugging (io:format/2) is not working in YAWS. I'm at a loss. My supervisor starts three processes: ETS Manager, YAWS Init, and Ratelimiter. This is successful. I can play around with the rate limiter in the shell... calling the same functions YAWS should be. The difference being the shell behaves as I would expect and I have no idea what is happening in YAWS.
I do know if I spam the command in shell: ratelimiter:limit(IP) it will return true eventually. I can execute the following and it will also return true: ratelimiter:lockout(IP), ratelimiter:blacklist(IP). The limiter is a gen_server.
The functions do the following:
limit/1: Check ETS table if counter > threshold; update counter. If counter > blacklist threshold make entry in mnesia table
blacklist/1: Check mnesia table if entry exists; Yes: reset timer
lockout/1: Immediately enters ID into mnesia table
In my arg_rewrite_mod module I'm doing some checks to ensure I'm getting the HTTP requests I expect, namely GET, POST, and HEAD. I thought this would be a nice place to also do the rate limiting. Do it as soon as possible in the web server's chain of events.
All the changes I've made to the arg_rewrite module seem to work except using "printf"s and the limiter. I'm new to the language so I'm not sure my mistake is obvious or not.
Skeleton of my arg_rewrite_mod:
-module(arg_preproc).
-export([arg_rewrite/1]).
-include("limiter_def.hrl").
-include_lib("/usr/lib/yaws/include/yaws_api.hrl").
is_blacklisted(ID) ->
case ratelimiter:blacklist(ID) of
false -> continue;
true -> throw(blacklist)
end.
is_limited(ID) ->
case ratelimiter:limit(ID) of
false -> continue;
true -> throw(limit)
end.
arg_rewrite(A) ->
Allow = ['GET','POST', 'HEAD'],
try
{IP, _} = A#arg.client_ip_port,
ID = IP,
is_blacklisted(ID),
io:format("~p ~p ~n",[ID, is_blacklisted(ID)]),
%% === Allow expected HTTP requests
HttpReq = (A#arg.req)#http_request.method,
case lists:member(HttpReq, Allow) of
true ->
{_,ReqTgt} = (A#arg.req)#http_request.path,
PassThru = [".css",".jpg",".jpeg",".png",".js"],
%% ... much more ...
false ->
is_limited(ID),
throw(http_method_denied)
end
catch
throw:blacklist -> %% Send back a 429;
throw:limit -> %% Same but no Retry-After;
throw:http_method_denied ->
%%Only thrown experienced
AllowedReq = string:join([atom_to_list(M) || M <- Allow], ","),
A#arg{state=#rewrite_response{status=405,
headers=[{header, {"Allow", AllowedReq}},{header, {connection, "close"}}]
}};
Type:Reason -> {error, {unhandled,{Type, Reason}}}
end.
I can spam curl -I -X HEAD <<any page>> as fast as I can in a bash shell and all I get is HTTP 200. The ETS table has zero entries as well. Using PUT I get a HTTP 405 as intended. I can ratelimiter:lockout({MY_IP}) and get the web page to load in my browser and a HTTP 200 with curl.
I'm confused. Is it the way I started YAWS?
start() ->
os:putenv("YAWSHOME", ?HOMEPATH_YAWS),
code:add_patha(?MODPATH_YAWS),
ok = case (R = application:start(yaws)) of
{error, {already_started, _}} -> ok;
_ -> R
end,
{ok,self()}. %% Tell supervisor everything okay in a manner it expects.
I did this because I thought it would be "easier."
When starting Yaws as part of another application, it's important to use its embedding support. One important thing the Yaws embedding startup code does is set the application environment variable embedded to true:
application:set_env(yaws, embedded, true),
Yaws checks this variable in several of its code paths, especially during initialization, in order to avoid assuming that it's running as a stand-alone daemon process.
Regarding rate limiting, rather than using an arg rewriter, you might consider using a shaper. The yaws_shaper module provides a behavior that expects its callback module to implement two functions:
check/1: yaws_shaper calls this to allow the callback module to decide whether to allow the request from the client. It passes client host information as the callback argument. Your shaper callback module returns either the atom allow to allow the request to proceed, or the tuple {deny, Status, Message} where Status is an HTTP status code to return to the client, such as 429 to indicate the client is making too many requests, and Message is any extra HTML to be returned to the client. (It might be nice if Message could include a reply header such as Retry-After as well; this is something I'll consider adding to Yaws.)
update/3: yaws_shaper calls this when the response for a client is ready to be returned. The first argument is the client host information, the second argument is the number of "hits" (the value 1 for each request), and the third argument is the number of bytes being delivered in response to the client's request. Your shaper callback module can return ok from update/3 (Yaws does not use the return value).
A shaper can use this framework to track how many requests each client is making and how much data Yaws is delivering to each client, and use that information to limit or deny particular clients.
And finally, while "printf debugging" works, it's less than ideal especially in Erlang, which has built-in tracing. You should consider learning the dbg module so you can trace any function you want, see who called it, see what arguments are being passed to it, see what it returns, etc.

Erlang: spawn a process and wait for termination without using `receive`

In Erlang, can I call some function f (BIF or not), whose job is to spawn a process, run the function argf I provided, and doesn't "return" until argf has "returned", and do this without using receive clause (the reason for this is that f will be invoked in a gen_server, I don't want pollute the gen_server's mailbox).
A snippet would look like this:
%% some code omitted ...
F = fun() -> blah, blah, timer:sleep(10000) end,
f(F), %% like `spawn(F), but doesn't return until 10 seconds has passed`
%% ...
The only way to communicate between processes is message passing (of course you can consider to poll for a specific key in an ets or a file but I dont like this).
If you use a spawn_monitor function in f/1 to start the F process and then have a receive block only matching the possible system messages from this monitor:
f(F) ->
{_Pid, MonitorRef} = spawn_monitor(F),
receive
{_Tag, MonitorRef, _Type, _Object, _Info} -> ok
end.
you will not mess your gen_server mailbox. The example is the minimum code, you can add a timeout (fixed or parameter), execute some code on normal or error completion...
You will not "pollute" the gen_servers mailbox if you spawn+wait for message before you return from the call or cast. A more serious problem with this maybe that you will block the gen_server while you are waiting for the other process to terminate. A way around this is to not explicitly wait but return from the call/cast and then when the completion message arrives handle it in handle_info/2 and then do what is necessary.
If the spawning is done in a handle_call and you want to return the "result" of that process then you can delay returning the value to the original call from the handle_info handling the process termination message.
Note that however you do it a gen_server:call has a timeout value, either implicit or explicit, and if no reply is returned it generates an error in the calling process.
Main way to communicate with process in Erlang VM space is message passing with erlang:send/2 or erlang:send/3 functions (alias !). But you can "hack" Erlang and use multiple way for communicating over process.
You can use erlang:link/1 to communicate stat of the process, its mainly used in case of your process is dying or is ended or something is wrong (exception or throw).
You can use erlang:monitor/2, this is similar to erlang:link/1 except the message go directly into process mailbox.
You can also hack Erlang, and use some internal way (shared ETS/DETS/Mnesia tables) or use external methods (database or other things like that). This is clearly not recommended and "destroy" Erlang philosophy... But you can do it.
Its seems your problem can be solved with supervisor behavior. supervisor support many strategies to control supervised process:
one_for_one: If one child process terminates and is to be restarted, only that child process is affected. This is the default restart strategy.
one_for_all: If one child process terminates and is to be restarted, all other child processes are terminated and then all child processes are restarted.
rest_for_one: If one child process terminates and is to be restarted, the 'rest' of the child processes (that is, the child processes after the terminated child process in the start order) are terminated. Then the terminated child process and all child processes after it are restarted.
simple_one_for_one: A simplified one_for_one supervisor, where all child processes are dynamically added instances of the same process type, that is, running the same code.
You can also modify or create your own supervisor strategy from scratch or base on supervisor_bridge.
So, to summarize, you need a process who wait for one or more terminating process. This behavior is supported natively with OTP, but you can also create your own model. For doing that, you need to share status of every started process, using cache or database, or when your process is spawned. Something like that:
Fun = fun
MyFun (ParentProcess, {result, Data})
when is_pid(ParentProcess) ->
ParentProcess ! {self(), Data};
MyFun (ParentProcess, MyData)
when is_pid(ParentProcess) ->
% do something
MyFun(ParentProcess, MyData2) end.
spawn(fun() -> Fun(self(), InitData) end).
EDIT: forgot to add an example without send/receive. I use an ETS table to store every result from lambda function. This ETS table is set when we spawn this process. To get result, we can select data from this table. Note, the key of the row is the process id of the process.
spawner(Ets, Fun, Args)
when is_integer(Ets),
is_function(Fun) ->
spawn(fun() -> Fun(Ets, Args) end).
Fun = fun
F(Ets, {result, Data}) ->
ets:insert(Ets, {self(), Data});
F(Ets, Data) ->
% do something here
Data2 = Data,
F(Ets, Data2) end.

Link two process in Erlang?

To exchange data,it becomes important to link the process first.The following code does the job of linking two processes.
start_link(Name) ->
gen_fsm:start_link(?MODULE, [Name], []).
My Question : which are the two processes being linked here?
In your example, the process that called start_link/1 and the process being started as (?MODULE, Name, Args).
It is a mistake to think that two processes need to be linked to exchange data. Data links the fate of the two processes. If one dies, the other dies, unless a system process is the one that starts the link (a "system process" means one that is trapping exits). This probably isn't what you want. If you are trying to avoid a deadlock or do something other than just timeout during synchronous messaging if the process you are sending a message to dies before responding, consider something like this:
ask(Proc, Request, Data, Timeout) ->
Ref = monitor(process, Proc),
Proc ! {self(), Ref, {ask, Request, Data}},
receive
{Ref, Res} ->
demonitor(Ref, [flush]),
Res;
{'DOWN', Ref, process, Proc, Reason} ->
some_cleanup_action(),
{fail, Reason}
after
Timeout ->
{fail, timeout}
end.
If you are just trying to spawn a worker that needs to give you an answer, you might want to consider using spawn_monitor instead and using its {pid(), reference()} return as the message you're listening for in response.
As I mentioned above, the process starting the link won't die if it is trapping exits, but you really want to avoid trapping exits in most cases. As a basic rule, use process_flag(trap_exit, true) as little as possible. Getting trap_exit happy everywhere will have structural effects you won't intend eventually, and its one of the few things in Erlang that is difficult to refactor away from later.
The link is bidirectional, between the process which is calling the function start_link(Name) and the new process created by gen_fsm:start_link(?MODULE, [Name], []).
A called function is executed in the context of the calling process.
A new process is created by a spawn function. You should find it in the gen_fsm:start_link/3 code.
When a link is created, if one process exit for an other reason than normal, the linked process will die also, except if it has set process_flag(trap_exit, true) in which case it will receive the message {'EXIT',FromPid,Reason} where FromPid is the Pid of the process that came to die, and Reason the reason of termination.

how to create a keep-alive process in Erlang

I'm currently reading Programming Erlang! , at the end of Chapter 13, we want to create a keep-alive process,
the example likes:
on_exit(Pid, Fun) ->
spawn(fun() ->
Ref = monitor(process, Pid),
receive
{'DOWN', Ref, process, Pid, Info} ->
Fun(Info)
end
end).
keep_alive(Name, Fun) ->
register(Name, Pid = spawn(Fun)),
on_exit(Pid, fun(_Why) -> keep_alive(Name, Fun) end).
but when between register/2 and on_exit/2 the process maybe exit, so the monitor will failed, I changed the keep_alive/2 like this:
keep_alive(Name, Fun) ->
{Pid, Ref} = spawn_monitor(Fun),
register(Name, Pid),
receive
{'DOWN', Ref, process, Pid, _Info} ->
keep_alive(Name, Fun)
end.
There also an bug, between spawn_monitor/2 and register/2, the process maybe exit. How could this come to run successfully? Thanks.
I'm not sure that you have a problem that needs solving. Monitor/2 will succeed even if your process exits after register/2. Monitor/2 will send a 'DOWN' message whose Info component will be noproc. Per the documentation:
A 'DOWN' message will be sent to the monitoring process if Item dies, if Item does not exist, or if the connection is lost to the node which Item resides on. (see http://www.erlang.org/doc/man/erlang.html#monitor-2).
So, in your original code
register assocates Name to the Pid
Pid dies
on_exit is called and monitor/2 is executed
monitor immediately sends a 'DOWN' message which is received by the function spawned by on_exit
the Fun(Info) of the received statement is executed calling keep_alive/2
I think all is good.
So why you did't want to use erlang supervisor behaviour? it's provides useful functions for creating and restarting keep-alive processes.
See here the example: http://www.erlang.org/doc/design_principles/sup_princ.html
In your second example, if process exits before registration register will fail with badarg. The easiest way to get around that would be surrounding register with try ... catch and handle error in catch.
You can even leave catch empty, because even if registration failed, the 'DOWN' message, will be sent.
On the other hand, I wouldn't do that in production system. If your worker fails so fast, it is very likely, that the problem is in its initialisation code and I would like to know, that it failed to register and stopped the system. Otherwise, it could fail and be respawned in an endless loop.

Can my gen_server become a bottleneck?

I'm currently writing a piece of software in erlang, which is now based on gen_server behaviour. This gen_server should export a function (let's call it update/1) which should connect using ssl to another service online and send to it the value passed as argument to the function.
Currently update/1 is like this:
update(Value) ->
gen_server:call(?SERVER, {update, Value}).
So once it is called, there is a call to ?SERVER which is handled as:
handle_call({update, Value}, _From, State) ->
{ok, Socket} = ssl:connect("remoteserver.com", 5555, [], 3000).
Reply = ssl:send(Socket, Value).
{ok, Reply, State}.
Once the packet is sent to the remote server, the peer should severe the connection.
Now, this works fine with my tests in shell, but what happens if we have to call 1000 times mymod:update(Value) and ssl:connect/4 is not working well (i.e. is reaching its timeout)?
At this point, my gen_server will have a very large amount of values and they can be processed only one by one, leading to the point that the 1000th update will be done only 1000*3000 milliseconds after its value was updated using update/1.
Using a cast instead of a call would leave to the same problem. How can I solve this problem? Should I use a normal function and not a gen_server call?
From personal experience I can say that 1000 messages per gen_server process wont be a problem unless you are queuing big messages.
If from your testing it seems that your gen_server is not able to handle this much load, then you must create multiple instances of your gen_server preferably under a supervisor process at the boot time (or run-time) of your application.
Besides that, I really don't understand the requirement of making a new connection for each update!! you should consider some optimization like cached connections/ pre-connections to the server..no?

Resources