One background image vs repeating pattern/images, for Corona SDK game? - coronasdk

What would be a better approach in Corona re static background for a 2D scrolling based game?
Let's say the game level "size" is the equivalent of two screens wide and two screens deep.
Q1 - Would one large background image be an OK approach? This would probably be easier as you could do the work in Photoshop to prepare. Or is there a significant advantage (re performance) in Corona to have a small image "pattern" and repeat this in Corona (Lua code) to create the backdrop?
Q2 - If one large background image approach is OK, would I assume that one might have to sacrifice the resolution of the image, noting the size (2xscreens wide, and 2xscreens deep) correct for the higher resolution devices? That is for the iPad 3 say, assuming your configuration would normally would try to pickup the 3x image version (for other images, say smaller play icons, etc.) that for the background you might have to remain with the 1x or 2x image size. Otherwise, it may hit the texture limit (I've read "Most devices have a maximum texture size of 2048x2048"). Is this correct / does this make sense?

I used both approaches on my games.
Advantages of tiled mode:
You can make huge backgrounds.
Can be made to use less memory (specially with smallish tiles with lots of repeating, like a real world wallpaper)
Allow for some interesting effects (like parallax scrolling).
Problems of tiled mode:
Use more CPU performance
Might be buggy and hard to make behave correctly (for example one of my games gaps showed between tiles, but only on iPad Retina... it required some heavy math hackery to make it work)
It is hard to make complex and awesome backgrounds (reason why my point and click adventure games don't use tiled backgrounds).
Pay attention that some devices, has a limit in the size of the textures in pixels, this might be the ultimate limit of how large a single-texture background can be.

Related

Sprite Animation file sizes in SpriteKit

I looked into inverse kinematics as a way of using animation, but overall thought I might want to proceed with using sprite texture atlases to create animation instead. The only thing is i'm concerned about size..
I wanted to ask for some help in the "overall global solution":
I will have 100 monsters. Each has 25 frames of animation for an attack, idle, and spawning animation. Thus 75 frames in total per monster.
I'd imagine I want to do 3x, 2x and 1x animations so that means even more frames (75 x 3 images per monster). Unless I do pdf vectors then it's just one size.
Is this approach just too much in terms of size? 25 frames of animation alone was 4MB on the hard disk, but i'm not sure what happens in terms of compression when you load that into the Xcode and texture atlas.
Does anyone know if this approach i'm embarking on will take up a lot of space and potentially be a poor decision long term if I want even more monsters (right now I only have a few monsters and other images and i'm already up to ~150MB when I go to the app on the phone and look at it's storage - so it's hard to tell what would happen in the long term with way more monsters but I feel like it would be prohibitively large like 4GB+).
To me, this sounds like the wrong approach, and yet everywhere I read, they encourage using sprites and atlases accordingly. What am I doing wrong? too many frames of animation? too many monsters?
Thanks!
So, you are correct that you will run into a problem. In general, the tutorials you find online simply ignore this issue of download side and memory use on device. When building a real game you will need to consider total download size and the amount of memory on the actual device when rendering multiple animations at the same time on screen. There are 3 approaches, just store everything as PNG, make use of an animation format that compresses better than PNG, or third you can encode things as H264. Each of these approaches has issues. If you would like to take a look at my solution to the memory use issue at runtime, have a peek at SpriteKitFireAnimation link at this question. If you want to roll your own approach with H264, you can get lots of compression but you will have issues with alpha channel support. The lazy thing to do is use PNGs, it will work and support alpha channel, but PNGs will bloat your app and runtime memory use is heavy.

SpriteKit low performance

I have an app, that in one screen it has randomly positioned 800 - 1200 images all over the entire screen (small dots - see .png attachment). I tried that with UIImageView, Layers, UIViews, but the performance was always terrible, so I decided to use SpriteKit in this ViewController, to take advantage of device's OpenGL. The boost was really noticeable, but still the performance is not acceptable.
I'm fading out and in 1/3 of all the images (dots) 10/sec.
Any Ideas, how to increase the performance? It's only a couple of hundreds 13px x 13px (retina) .PNGs :)
Here's the .png:
You, my friend, need to be using SKEmitterNode.
In Xcode, you select File -> New -> File... and in the Resources section select SpriteKit Particle File. Supply it with your image and set up the parameters to create the desired effect. Voila!
How can I put this ... it's just a lot of sprites, it may not get much faster no matter what, specifically not with alpha blending (fading).
Perhaps you can simulate the effect using particles, they're faster to render than the same number of sprites but you have less influence over particles.
Also be sure you test performance on a real device, iOS Simulator's software rendering is very slow.

What kind of images should go into a spritesheet for a cocos2d ios app?

I apologize upfront for the long question, with multiple subquestions, but the question is really as stated in the title. All that follows is a detailed breakup of different aspects of the question.
In my universal ios game built using cocos2d, I have four categories of images - I want to determine which of them should go into spritesheets and which are better off loaded as individual images. My current guess is that only character animations that run throughout the game provide value being loaded in memory as spritesheets:
Character animations that run throughout the game play (except
when user is in menus): for these, I assume that having the images
in a spritesheet will reduce runtime memory usage (due to the
padding of individual files to power of two byte boundaries), hence
they are candidates for a spritesheet. Is that correct?
Small images (about 200 of them) of which 0 to 4 are displayed at any
time, picked at random, during game play. For these, I am not sure
if it is worth having all 200 images loaded in memory when only at
most any 4 are used at a time. So it may be better to directly
access them as images. Is that correct?
A few (about 20) small menu elements like buttons that are used only in static menus: since the menu items are used only during menu display, I assume they are not of much value in improving memory access via spritesheets. Is that correct?
A few large images that are used as backgrounds for the menus, the game play scene, etc. Most of these images are as large as the screen resolution. Since the screen resolution is roughly equal to the maximum size of a single image (for example, for ipad retina, 4096 x 4096 image size versus screen size of 2048 x 1536), there isn't much gain in using spritesheets as at most 1 or 2 large images would fit in one spritesheet. Also, since each of these large files is used only in one scene, loading all these large images as spritesheets in memory upfront seems like an unnecessary overhead. Hence, directly access them as spritesheets. Is that correct?
A couple of common related questions:
a) Packing images used across different scenes into the same spritesheet makes us load them into memory even when only a subset of the images is used in that scene. I assume that is a bad idea. Correct?
b) There is a stutter in the game play only on older devices (iPad 1 and iPhone 3gs). Will spritesheets help reduce such stutter?
c) I assume that spritesheets are only going to benefit runtime memory footprint, and not so much the on disk size of the app archive. I noticed, for instance, that a set of files which are 11.8 MB in size, when put in a spritesheet are 11 Mb - not much of a compression benefit. Is that a valid assumption?
Please let me know your thoughts on my rationale above.
Thanks
Anand
Rule of thumb: everything goes in a spritesheet (texture atlas), unless there's a good reason not to.
Definitely texture atlas.
Cocos2d's caching mechanism will cause all individual images to be cached and remain in memory, so eventually they'll use more than if they were in a texture atlas. I would only use single images if they're rarely needed (ie menu icons) and I would also remove them from CCTextureCache just after they've been added to the scene, to make sure they will be removed from memory when leaving that menu screen.
Assumption may be wrong. A 320x480 image uses 512x512 as a texture in memory. If you have multiple of them, you may be better off having them all in a single texture atlas. Unless you enabled NPOT support in cocos2d. Again, don't forget that CCTextureCache is caching the textures.
Keep in mind that large textures benefit a lot from spritebatching. So even if there may only be 2-3 images in the texture atlas, it can make a difference in performance.
a) It really depends. If your app is running low on memory, you might want to have separate texture atlases. Otherwise it would be wasteful not to pack the images into a single texture atlas (if possible).
b) It depends on what's causing the stutter. Most common issue: loading resources (ie images) during gameplay, or creating and removing many nodes every frame instead of re-using existing ones.
c) Probably. It may depend on the texture atlas tool (I recommend TexturePacker). It definitely depends on the file format. If you can pack multiple PNG into a single .pvr.ccz texture atlas, you'll save a lot of memory (and gain loading speed).
For more info refer to my cocos2d memory optimization blog post.

Performance for simple gui elements: quartz 2d or png?

I have some simple buttons in my iOS app. I'm able to draw them propperly with quartz 2d, but I could also use png-slices to build them.
What would be nicer to the iPads CPU and allocations?
If I were you I'd take the factors of resolution independence and application size into account as well. Simple UI elements even Apple recommends to draw in Quartz (See WWDC 2011 - Practical Drawing). Most of Apple's own Apps do it that way as well (Stocks App, Weather App, a good part of iPhoto etc.)
Performance wise I've ran some tests here ( https://github.com/pkluz/PKCoreTechniques ) by creating an AngryBird solely in Quartz with Bezier Curves of fairly high degrees. Now for an iPad 3 I'd have to provide fairly large images to do so (>2-3 MB just for ONE image on said device) but with Quartz it's just a couple of bytes of code. The rendering of said Angry Bird was most of the time about 15-18% slower than loading an image but I assume that'd quickly change if the pixel density increased any further. For simple shapes Quartz should most of the time be faster than loading images from the bundle. Though remember, the growth isn't linear, so depending on complexity and size those can quickly change in favor of images.
Remember how Apps doubled in size when the iPad 3 came out. You wouldn't have that problem with Quartz and your app would be ready for high-res without any additional work:)
The rule of thumb I advise people to follow is: "If I can't wrap my head around the geometric description of an object right off the bat, I will use an image."

iOS: playing a frame-by-frame greyscale animation in a custom colour

I have a 32 frame greyscale animation of a diamond exploding into pieces (ie 32 PNG images # 1024x1024)
my game consists of 12 separate colours, so I need to perform the animation in any desired colour
this I believe rules out any Apple frameworks, also it rules out a lot of public code for animating frame by frame in iOS.
what are my potential solution paths?
these are the best SO links I have found:
Faster iPhone PNG Animations
frame by frame animation
Is it possible using video as texture for GL in iOS?
that last one just shows it is may be possible to load an image into a GL texture each frame ( he is doing it from the camera, so if I have everything stored in memory, that should be even faster )
I can see these options ( listed laziest first, most optimised last )
option A
each frame (courtesy of CADisplayLink), load the relevant image from file into a texture, and display that texture
I'm pretty sure this is stupid, so onto option B
option B
preload all images into memory
then as per above, only we load from memory rather than from file
I think this is going to be the ideal solution, can anyone give it the thumbs up or thumbs down?
option C
preload all of my PNGs into a single GL texture of the maximum size, creating a texture Atlas. each frame, set the texture coordinates to the rectangle in the Atlas for that frame.
while this is potentially a perfect balance between coding efficiency and performance efficiency, the main problem here is losing resolution; on older iOS devices maximum texture size is 1024x1024. if we are cramming 32 frames into this ( really this is the same as cramming 64 ) we would be at 128x128 for each frame. if the resulting animation is close to full screen on the iPad this isn't going to hack it
option D
instead of loading into a single GL texture, load into a bunch of textures
moreover, we can squeeze 4 images into a single texture using all four channels
I baulk at the sheer amount of fiddly coding required here. My RSI starts to tingle even thinking about this approach
I think I have answered my own question here, but if anyone has actually done this or can see the way through, please answer!
If something higher performance than (B) is needed, it looks like the key is glTexSubImage2D http://www.opengl.org/sdk/docs/man/xhtml/glTexSubImage2D.xml
Rather than pull across one frame at a time from memory, we could arrange say 16 512x512x8-bit greyscale frames contiguously in memory, send this across to GL as a single 1024x1024x32bit RGBA texture, and then split it within GL using the above function.
This would mean that we are performing one [RAM->VRAM] transfer per 16 frames rather than per one frame.
Of course, for more modern devices we could get 64 instead of 16, since more recent iOS devices can handle 2048x2048 textures.
I will first try technique (B) and leave it at that if it works ( I don't want to over code ), and look at this if needed.
I still can't find any way to query how many GL textures it is possible to hold on the graphics chip. I have been told that when you try to allocate memory for a texture, GL just returns 0 when it has run out of memory. however to implement this properly I would want to make sure that I am not sailing close to the wind re: resources... I don't want my animation to use up so much VRAM that the rest of my rendering fails...
You would be able to get this working just fine with CoreGraphics APIs, there is no reason to deep dive into OpenGL for a simple 2D problem like this. For the general approach you should take to creating colored frames from a grayscale frame, see colorizing-image-ignores-alpha-channel-why-and-how-to-fix. Basically, you need to use CGContextClipToMask() and then render a specific color so that what is left is the diamond colored in with the specific color you have selected. You could do this at runtime, or you could do it offline and create 1 video for each of the colors you want to support. It is be easier on your CPU if you do the operation N times and save the results into files, but modern iOS hardware is much faster than it used to be. Beware of memory usage issues when writing video processing code, see video-and-memory-usage-on-ios-devices for a primer that describes the problem space. You could code it all up with texture atlases and complex openGL stuff, but an approach that makes use of videos would be a lot easier to deal with and you would not need to worry so much about resource usage, see my library linked in the memory post for more info if you are interested in saving time on the implementation.

Resources