Per Instance Textures, and Vertex And Pixel Shaders? - directx

How do you implement per instance textures, vertex shaders, and pixel shaders, in the same Vertex Buffer and/or DeviceContext?
I am just trying to find the most efficient way to have different pixel shaders used by the same type of mesh, but colored differently. For example, I would like square and triangle models in the vertex buffer, and for the vertex/pixel/etc shaders to act differently based on instance data.... (If the instance data includes "dead" somehow, the shaders used to draw opaque shapes with solid colors rather than gradients are used.
Given:
1. Different model templates in Vertex Buffer, Square & Triangl, (more eventually).
Instance Buffer with [n] instances of type Square and/or Triangle, etc.
Guesses:
Things I am trying to Research to do this:
A: Can I add a Texture, VertexShader or PixelShader ID to the buffer data so that HLSL or the InputAssembly can determine which Shader to use at draw time?
B. Can I "Set" multiple Pixel and Vertex Shaders into the DeviceContext, and how do I tell DirectX to "switch" the Vertex Shader that is loaded at render time?
C. How many Shaders of each type, (Vertex, Pixel, Hull, etc), can I associate with model definitions/meshes in the default Vertex Buffer?
D. Can I use some sort of Shader Selector in HLSL?
Related C++ Code
When I create an input layout, can I do this without specifying an actual Vertex Shader, or somehow specify more than one?
NS::ThrowIfFailed(
result = NS::DeviceManager::Device->CreateInputLayout(
NS::ModelRenderer::InitialElementDescription,
2,
vertexShaderFile->Data,
vertexShaderFile->Length,
& NS::ModelRenderer::StaticInputLayout
)
);
When I set the VertexShader and PixelShader, how do I associate them with a particular model in my VertexBuffer? Is it possible to set more than one of each?
DeviceManager::DeviceContext->IASetInputLayout(ModelRenderer::StaticInputLayout.Get());
DeviceManager::DeviceContext->VSSetShader(ModelRenderer::StaticVertexShader.Get(), nullptr, 0);
DeviceManager::DeviceContext->PSSetShader(ModelRenderer::StaticPixelShader.Get(), nullptr, 0);

How do I add a Texture, VertexShader or PixelShader ID to the buffer
data so that HLSL or the InputAssembly can determine which Shader to
use at draw time?
You can't assign a Pixel Shader ID to a buffer, that's not how the pipeline works.
A / You can bind only one Vertex/Pixel Shader in a Device context at a time, which defines your pipeline, draw your geometry using this shader, then switch to another Vertex/Pixel shader as needed, draw next geometry...
B/ you can use different shaders using the same model, but that's done on cpu using VSSetShader, PSSetShader....
C/No, for same reason as in B (shaders are set on the CPU)
When I create an input layout, can I do this without specifying an actual Vertex Shader, or somehow specify more than one?
if you don't specify a vertex shader, the pipeline will consider that you draw "null" geometry, which is actually possible (and very fun), but bit out of context, if you provide geometry you need to send the vertex shader data so the runtime can match your geometry layout to the vertex input layout. You can of course create several input layouts by calling the function several times (once per vertex shader/geometry in worst case, but if two models/vertex shaders have the same layout you can omit it).
When I set the VertexShader and PixelShader, how do I associate them with a particular model in my VertexBuffer? Is it possible to set more than one of each?
You bind everything you need (Vertex/Pixel shaders, Vertex/IndexBuffer,Input layout) and call draw (or drawinstanced).

Related

What can vertex function do except for mapping to clip space?

The Metal Shading Language includes a lot of mathematic functions, but it seems most of the codes inside Metal official documentation just use it to map vertexes from pixel space to clip space like
RasterizerData out;
out.clipSpacePosition = vector_float4(0.0, 0.0, 0.0, 1.0);
float2 pixelSpacePosition = vertices[vertexID].position.xy;
vector_float2 viewportSize = vector_float2(*viewportSizePointer);
out.clipSpacePosition.xy = pixelSpacePosition / (viewportSize / 2.0);
out.color = vertices[vertexID].color;
return out;
Except for GPGPU using kernel functions to do parallel computation, what things that vertex function can do, with some examples? In a game, if all vertices positions are calculated by the CPU, why GPU still matters? What does vertex function do usually?
Vertex shaders compute properties for vertices. That's their point. In addition to vertex positions, they also calculate lighting normals at each vertex. And potentially texture coordinates. And various material properties used by lighting and shading routines. Then, in the fragment processing stage, those values are interpolated and sent to the fragment shader for each fragment.
In general, you don't modify vertices on the CPU. In a game, you'd usually load them from a file into main memory, put them into a buffer and send them to the GPU. Once they're on the GPU you pass them to the vertex shader on each frame along with model, view, and projection matrices. A single buffer containing the vertices of, say, a tree or a car's wheel might be used multiple times. Each time all the CPU sends is the model, view, and projection matrices. The model matrix is used in the vertex shader to reposition and scale the vertice's positions in world space. The view matrix then moves and rotates the world around so that the virtual camera is at the origin and facing the appropriate way. Then the projection matrix modifies the vertices to put them into clip space.
There are other things a vertex shader can do, too. You can pass in vertices that are in a grid in the x-y plane, for example. Then in your vertex shader you can sample a texture and use that to generate the z-value. This gives you a way to change the geometry using a height map.
On older hardware (and some lower-end mobile hardware) it was expensive to do calculations on a texture coordinate before using it to sample from a texture because you lose some cache coherency. For example, if you wanted to sample several pixels in a column, you might loop over them adding an offset to the current texture coordinate and then sampling with the result. One trick was to do the calculation on the texture coordinates in the vertex shader and have them automatically interpolated before being sent to the fragment shader, then doing a normal look-up in the fragment shader. (I don't think this is an optimization on modern hardware, but it was a big win on some older models.)
First, I'll address this statement
In a game, if all vertices positions are calculated by the CPU, why GPU still matters? What does vertex function do usually?
I don't believe I've seen anyone calculating positions for meshes that will be later used to render them on a GPU. It's slow, you would need to get all this data from CPU to a GPU (which means copying it through a bus if you have a dedicated GPU). And it's just not that flexible. There are much more things other than vertex positions that are required to produce any meaningful image and calculating all this stuff on CPU is just wasteful, since CPU doesn't care for this data for the most part.
The sole purpose of vertex shader is to provide rasterizer with primitives that are in clip space. But there are some other uses that are mostly tricks based on different GPU features.
For example, vertex shaders can write out some data to buffers, so, for example, you can stream out transformed geometry if you don't want to transform it again at a later vertex stage if you have multi-pass rendering that uses the same geometry in more than one pass.
You can also use vertex shaders to output just one triangle that covers the whole screen, so that fragment shaders gets called one time per pixel for the whole screen (but, honestly, you are better of using compute (kernel) shaders for this).
You can also write out data from vertex shader and not generate any primitives. You can do that by generating degenerate triangles. You can use this to generate bounding boxes. Using atomic operations you can update min/max positions and read them at a later stage. This is useful for light culling, frustum culling, tile-based processing and many other things.
But, and it's a BIG BUT, you can do most of this stuff in a compute shader without incurring GPU to run all the vertex assembly pipeline. That means, you can do full-screen effects using just a compute shader (instead of vertex and fragment shader and many pipeline stages in between, such as rasterizer, primitive culling, depth testing and output merging). You can calculate bounding boxes and do light culling or frustum culling in compute shader.
There are reasons to fire up the whole rendering pipeline instead of just running a compute shader, for example, if you will still use triangles that are output from vertex shader, or if you aren't sure how primitives are laid out in memory so you need vertex assembler to do the heavy lifting of assembling primitives. But, getting back to your point, almost all of the reasonable uses for vertex shader include outputting primitives in clip space. If you aren't using resulting primitives, it's probably best to stick to compute shaders.

Using gl_FragData[] from multiple shader files

I have a webgl shader set up with some shaders. I'm using multiple render targets (gl_FragData[])
In the first shader, I can output to
gl_FragData[0] = vec4(..);
gl_FragData[1] = vec4(..);
gl_FragData[2] = vec4(..);
Now with my second shader, I want to output to gl_FragData[3] and save the texture to pass to my third shader.
The second shader doesn't seem to output to gl_FragData[3], yet this works if I use it in my first shader. I want the output of gl_FragData[3] to be stored in a texture and sent to the third shader.
I think it may have to do with the framebuffer, but I've tried changing that and have had no luck. What am I missing?
If you want to use the same framebuffer, you'll need to mask off the unused draw buffers: drawBuffers([COLOR_ATTACHMENT0, COLOR_ATTACHMENT1, COLOR_ATTACHMENT2]) for the first shader, and drawBuffers([NONE, NONE, NONE, COLOR_ATTACHMENT3]) for the second shader.
From EXT_draw_buffers:
Any colors, or color components, associated with a fragment that are not written by the fragment shader are undefined.

Reading variable from vertex shader for rendering in webgl

I want to implement a collision detector between a moving and a static object. The way I am thinking of doing so is by checking in vertex shader every time if any vertex of the moving object intersects with the position of the static object.
By doing the above, I would get the point of collision in the vertex shader, but I want to use the variable for rendering purposes in the js file.
Is there a way to do it.
In WebGL 1 you can not directly read any data from a vertex shader. The best you can do is use the vertex shader to affect the pixels rendered in the fragment shader. So you could for example set gl_Position so nothing is rendered if it fails your test and a single pixel is rendered if the test passes. Or you can set some varying that sets certain colors based on your test results. Then you can either read the pixel with gl.readPixels or you can just pass the texture you wrote to to another shader in a different draw calls.
In WebGL2 you can use transform feedback to allow a vertex shader to write its varyings to a buffer. You can then use that buffer in other draw calls or read it's contents with gl.getSubBuffer
In WebGL2 you can also do occlusion queries which means you can try to draw something and test if it was actually drawn or if the depth buffer prevented it from being drawn.

Modifying Individual Pixels with SKShader

I am attempting to write a fragment shader for the app that I am working on. I pass my uniform into the shader which works but it works on the entire object. I want to be able to modify the object pixel by pixel. So my code now is....
let shader = SKShader( fileNamed: "Shader.fsh" );
shader.addUniform( SKUniform( name: "value", float: 1.0 ) );
m_image.shader = shader;
Here the uniform "value" will be the same for all pixels. But, for example, let's say I want to change "value" to "0.0" after a certain amount of pixels are drawn. So for example....
shader.addUniform( SKUniform( name: "value", float: 1.0 ) );
// 100 pixels are drawn
shader.addUniform( SKUniform( name: "value", float: 0.0 ) );
Is this even possible with SKShader? Would this have to be done in the shader source?
One idea I was thinking of was using an array uniform but it doesn't appear that SKShader allows this.
Thanks for any help is advance.
In general, the word uniform means unchanging — something that's the same in all cases or situations. Such is the way of shader uniforms: even though the shader code runs independently (and in parallel) for each pixel in a rendered, images, the value of a uniform variable input to the shader is the same across all pixels.
While you could, in theory, pass an array of values into the shader representing the colors for every pixel, that's essentially the same as passing an image (or just setting a texture image on the sprite)... at that point you're using a shader for nothing.
Instead, you typically want your GLSL(ish*) code to, if it's doing anything based on pixel location, find out the pixel coordinates it's writing to and calculate a result based on that. In a shader for SKShader, you get pixel coordinates from the vec2 v_tex_coord shader variable.
(This looks like a decent tutorial (with links to others) for getting started on SpriteKit shaders. If you follow other tutorials or shader code libraries for help doing cool stuff with pixel shaders, you'll find ideas and algorithms you can reuse, but the ways they find the current output pixel will be different. In a shader for SpriteKit, you can usually safely replace gl_FragCoord with v_tex_coord.)
* SKShader doesn't use actual GLSL per se, It actually uses a subset of GLSL that automatically translates to appropriate GPU code for the device/renderer in use.

Writing texture data onto depth buffer

I'm trying to implement the technique described at : Compositing Images with Depth.
The idea is to use an existing texture (loaded from an image) as a depth mask, to basically fake 3D.
The problem I face is that glDrawPixels is not available in OpenglES. Is there a way to accomplish the same thing on the iPhone?
The depth buffer is more obscured than you think in OpenGL ES; not only is glDrawPixels absent but gl_FragDepth has been removed from GLSL. So you can't write a custom fragment shader to spool values to the depth buffer as you might push colours.
The most obvious solution is to pack your depth information into a texture and to use a custom fragment shader that does a depth comparison between the fragment it generates and one looked up from a texture you supply. Only if the generated fragment is closer is it allowed to proceed. The normal depth buffer will catch other cases of occlusion and — in principle — you could use a framebuffer object to create the depth texture in the first place, giving you a complete on-GPU round trip, though it isn't directly relevant to your problem.
Disadvantages are that drawing will cost you an extra texture unit and textures use integer components.
EDIT: for the purposes of keeping the example simple, suppose you were packing all of your depth information into the red channel of a texture. That'd give you a really low precision depth buffer, but just to keep things clear, you could write a quick fragment shader like:
void main()
{
// write a value to the depth map
gl_FragColor = vec4(gl_FragCoord.w, 0.0, 0.0, 1.0);
}
To store depth in the red channel. So you've partially recreated the old depth texture extension — you'll have an image that has a brighter red in pixels that are closer, a darker red in pixels that are further away. I think that in your question, you'd actually load this image from disk.
To then use the texture in a future fragment shader, you'd do something like:
uniform sampler2D depthMap;
void main()
{
// read a value from the depth map
lowp vec3 colourFromDepthMap = texture2D(depthMap, gl_FragCoord.xy);
// discard the current fragment if it is less close than the stored value
if(colourFromDepthMap.r > gl_FragCoord.w) discard;
... set gl_FragColor appropriately otherwise ...
}
EDIT2: you can see a much smarter mapping from depth to an RGBA value here. To tie in directly to that document, OES_depth_texture definitely isn't supported on the iPad or on the third generation iPhone. I've not run a complete test elsewhere.

Resources