I know that in the general case, making this conversion is impossible since depth information is lost going from 3d to 2d.
However, I have a fixed camera and I know its camera matrix. I also have a planar calibration pattern of known dimensions - let's say that in world coordinates it has corners (0,0,0) (2,0,0) (2,1,0) (0,1,0). Using opencv I can estimate the pattern's pose, giving the translation and rotation matrices needed to project a point on the object to a pixel in the image.
Now: this 3d to image projection is easy, but how about the other way? If I pick a pixel in the image that I know is part of the calibration pattern, how can I get the corresponding 3d point?
I could iteratively choose some random 3d point on the calibration pattern, project to 2d, and refine the 3d point based on the error. But this seems pretty horrible.
Given that this unknown point has world coordinates something like (x,y,0) -- since it must lie on the z=0 plane -- it seems like there should be some transformation that I can apply, instead of doing the iterative nonsense. My maths isn't very good though - can someone work out this transformation and explain how you derive it?
Here is a closed form solution that I hope can help someone. Using the conventions in the image from your comment above, you can use centered-normalized pixel coordinates (usually after distortion correction) u and v, and extrinsic calibration data, like this:
|Tx| |r11 r21 r31| |-t1|
|Ty| = |r12 r22 r32|.|-t2|
|Tz| |r13 r23 r33| |-t3|
|dx| |r11 r21 r31| |u|
|dy| = |r12 r22 r32|.|v|
|dz| |r13 r23 r33| |1|
With these intermediate values, the coordinates you want are:
X = (-Tz/dz)*dx + Tx
Y = (-Tz/dz)*dy + Ty
Explanation:
The vector [t1, t2, t3]t is the position of the origin of the world coordinate system (the (0,0) of your calibration pattern) with respect to the camera optical center; by reversing signs and inversing the rotation transformation we obtain vector T = [Tx, Ty, Tz]t, which is the position of the camera center in the world reference frame.
Similarly, [u, v, 1]t is the vector in which lies the observed point in the camera reference frame (starting from camera center). By inversing the rotation transformation we obtain vector d = [dx, dy, dz]t, which represents the same direction in world reference frame.
To inverse the rotation transformation we take advantage of the fact that the inverse of a rotation matrix is its transpose (link).
Now we have a line with direction vector d starting from point T, the intersection of this line with plane Z=0 is given by the second set of equations. Note that it would be similarly easy to find the intersection with the X=0 or Y=0 planes or with any plane parallel to them.
Yes, you can. If you have a transformation matrix that maps a point in the 3d world to the image plane, you can just use the inverse of this transformation matrix to map a image plane point to the 3d world point. If you already know that z = 0 for the 3d world point, this will result in one solution for the point. There will be no need to iteratively choose some random 3d point. I had a similar problem where I had a camera mounted on a vehicle with a known position and camera calibration matrix. I needed to know the real world location of a lane marking captured on the image place of the camera.
If you have Z=0 for you points in world coordinates (which should be true for planar calibration pattern), instead of inversing rotation transformation, you can calculate homography for your image from camera and calibration pattern.
When you have homography you can select point on image and then get its location in world coordinates using inverse homography.
This is true as long as the point in world coordinates is on the same plane as the points used for calculating this homography (in this case Z=0)
This approach to this problem was also discussed below this question on SO: Transforming 2D image coordinates to 3D world coordinates with z = 0
Related
I'm coding a calibration algorithm for my depth-camera. This camera outputs an one channel 2D image with the distance of every object in the image.
From that image, and using the camera and distortion matrices, I was able to create a 3D point cloud, from the camera perspective. Now I wish to convert those 3D coordinates to a global/world coordinates. But, since I can't use any patterns like the chessboard to calibrate the camera, I need another alternative.
So I was thinking: If I provide some ground points (in the camera perspective), I would define a plane that I know should have the Z coordinate close to zero, in the global perspective. So, how should I proceed to find the transformation matrix that horizontalizes the plane.
Local coordinates ground plane, with an object on top
I tried using the OpenCV's solvePnP, but it didn't gave me the correct transformation. Also I thought in using the OpenCV's estimateAffine3D, but I don't know where should the global coordinates be mapped to, since the provided ground points do not need to lay on any specific pattern/shape.
Thanks in advance
What you need is what's commonly called extrinsic calibration: a rigid transformation relating the 3D camera reference frame to the 'world' reference frame. Usually, this is done by finding known 3D points in the world reference frame and their corresponding 2D projections in the image. This is what SolvePNP does.
To find the best rotation/translation between two sets of 3D points, in the sense of minimizing the root mean square error, the solution is:
Theory: https://igl.ethz.ch/projects/ARAP/svd_rot.pdf
Easier explanation: http://nghiaho.com/?page_id=671
Python code (from the easier explanation site): http://nghiaho.com/uploads/code/rigid_transform_3D.py_
So, if you want to transform 3D points from the camera reference frame, do the following:
As you proposed, define some 3D points with known position in the world reference frame, for example (but not necessarily) with Z=0. Put the coordinates in a Nx3 matrix P.
Get the corresponding 3D points in the camera reference frame. Put them in a Nx3 matrix Q.
From the file defined in point 3 above, call rigid_transform_3D(P, Q). This will return a 3x3 matrix R and a 3x1 vector t.
Then, for any 3D point in the world reference frame p, as a 3x1 vector, you can obtain the corresponding camera point, q with:
q = R.dot(p)+t
EDIT: answer when 3D position of points in world are unspecified
Indeed, for this procedure to work, you need to know (or better, to specify) the 3D coordinates of the points in your world reference frame. As stated in your comment, you only know the points are in a plane but don't have their coordinates in that plane.
Here is a possible solution:
Take the selected 3D points in camera reference frame, let's call them q'i.
Fit a plane to these points, for example as described in https://www.ilikebigbits.com/2015_03_04_plane_from_points.html. The result of this will be a normal vector n. To fully specify the plane, you need also to choose a point, for example the centroid (average) of q'i.
As the points surely don't perfectly lie in the plane, project them onto the plane, for example as described in: How to project a point onto a plane in 3D?. Let's call these projected points qi.
At this point you have a set of 3D points, qi, that lie on a perfect plane, which should correspond closely to the ground plane (z=0 in world coordinate frame). The coordinates are in the camera reference frame, though.
Now we need to specify an origin and the direction of the x and y axes in this ground plane. You don't seem to have any criteria for this, so an option is to arbitrarily set the origin just "below" the camera center, and align the X axis with the camera optical axis. For this:
Project the point (0,0,0) into the plane, as you did in step 4. Call this o. Project the point (0,0,1) into the plane and call it a. Compute the vector a-o, normalize it and call it i.
o is the origin of the world reference frame, and i is the X axis of the world reference frame, in camera coordinates. Call j=nxi ( cross product). j is the Y-axis and we are almost finished.
Now, obtain the X-Y coordinates of the points qi in the world reference frame, by projecting them on i and j. That is, do the dot product between each qi and i to get the X values and the dot product between each qi and j to get the Y values. The Z values are all 0. Call these X, Y, 0 coordinates pi.
Use these values of pi and qi to estimate R and t, as in the first part of the answer!
Maybe there is a simpler solution. Also, I haven't tested this, but I think it should work. Hope this helps.
I have the readings from a gyroscope attached to a camera describing the orientation of the camera in 3D (say with 3 Euler angles).
I take a picture (of say a flat plane) from this pose. After which, I want to transform the image to another image, as though it has been taken with the camera being perpendicular to the plane itself.
How would I do something like this in OpenCV? Can someone point me in the correct direction?
You can checkout how to calculate the rotation matrix using the roll-pitch-yaw angles here: http://planning.cs.uiuc.edu/node102.html
A Transformation matrix is T = [R t; 0 1] (in matlab notation)
Here, you can place the translation as a 3x1 vector in 't' and the calculated rotation matrix in 'R'.
Since a mathematical information is missing, I assume the Z-axis of the image and the camera are parallel. In this case, you have to add a 90° rotation to either the X or the Y axis to get a perpendicular view. This is to take care of orientation.
perspectiveTransform() function should be helpful thereon.
Check out this question for code insights: How to calculate perspective transform for OpenCV from rotation angles?
I am searching lots of resources on internet for many days but i couldnt solve the problem.
I have a project in which i am supposed to detect the position of a circular object on a plane. Since on a plane, all i need is x and y position (not z) For this purpose i have chosen to go with image processing. The camera(single view, not stereo) position and orientation is fixed with respect to a reference coordinate system on the plane and are known
I have detected the image pixel coordinates of the centers of circles by using opencv. All i need is now to convert the coord. to real world.
http://www.packtpub.com/article/opencv-estimating-projective-relations-images
in this site and other sites as well, an homographic transformation is named as:
p = C[R|T]P; where P is real world coordinates and p is the pixel coord(in homographic coord). C is the camera matrix representing the intrinsic parameters, R is rotation matrix and T is the translational matrix. I have followed a tutorial on calibrating the camera on opencv(applied the cameraCalibration source file), i have 9 fine chessbordimages, and as an output i have the intrinsic camera matrix, and translational and rotational params of each of the image.
I have the 3x3 intrinsic camera matrix(focal lengths , and center pixels), and an 3x4 extrinsic matrix [R|T], in which R is the left 3x3 and T is the rigth 3x1. According to p = C[R|T]P formula, i assume that by multiplying these parameter matrices to the P(world) we get p(pixel). But what i need is to project the p(pixel) coord to P(world coordinates) on the ground plane.
I am studying electrical and electronics engineering. I did not take image processing or advanced linear algebra classes. As I remember from linear algebra course we can manipulate a transformation as P=[R|T]-1*C-1*p. However this is in euclidian coord system. I dont know such a thing is possible in hompographic. moreover 3x4 [R|T] Vector is not invertible. Moreover i dont know it is the correct way to go.
Intrinsic and extrinsic parameters are know, All i need is the real world project coordinate on the ground plane. Since point is on a plane, coordinates will be 2 dimensions(depth is not important, as an argument opposed single view geometry).Camera is fixed(position,orientation).How should i find real world coordinate of the point on an image captured by a camera(single view)?
EDIT
I have been reading "learning opencv" from Gary Bradski & Adrian Kaehler. On page 386 under Calibration->Homography section it is written: q = sMWQ where M is camera intrinsic matrix, W is 3x4 [R|T], S is an "up to" scale factor i assume related with homography concept, i dont know clearly.q is pixel cooord and Q is real coord. It is said in order to get real world coordinate(on the chessboard plane) of the coord of an object detected on image plane; Z=0 then also third column in W=0(axis rotation i assume), trimming these unnecessary parts; W is an 3x3 matrix. H=MW is an 3x3 homography matrix.Now we can invert homography matrix and left multiply with q to get Q=[X Y 1], where Z coord was trimmed.
I applied the mentioned algorithm. and I got some results that can not be in between the image corners(the image plane was parallel to the camera plane just in front of ~30 cm the camera, and i got results like 3000)(chessboard square sizes were entered in milimeters, so i assume outputted real world coordinates are again in milimeters). Anyway i am still trying stuff. By the way the results are previosuly very very large, but i divide all values in Q by third component of the Q to get (X,Y,1)
FINAL EDIT
I could not accomplish camera calibration methods. Anyway, I should have started with perspective projection and transform. This way i made very well estimations with a perspective transform between image plane and physical plane(having generated the transform by 4 pairs of corresponding coplanar points on the both planes). Then simply applied the transform on the image pixel points.
You said "i have the intrinsic camera matrix, and translational and rotational params of each of the image.” but these are translation and rotation from your camera to your chessboard. These have nothing to do with your circle. However if you really have translation and rotation matrices then getting 3D point is really easy.
Apply the inverse intrinsic matrix to your screen points in homogeneous notation: C-1*[u, v, 1], where u=col-w/2 and v=h/2-row, where col, row are image column and row and w, h are image width and height. As a result you will obtain 3d point with so-called camera normalized coordinates p = [x, y, z]T. All you need to do now is to subtract the translation and apply a transposed rotation: P=RT(p-T). The order of operations is inverse to the original that was rotate and then translate; note that transposed rotation does the inverse operation to original rotation but is much faster to calculate than R-1.
I have used openCV to calculate the homography relating to views of the same plane by using features and matching them. Is there any way to recover the plane itsself or the plane normal from this homography? (I am looking for an equation where H is the input and the normal n is the output.)
If you have the calibration of the cameras, you can extract the normal of the plane, but not the distance to the plane (i.e. the transformation that you obtain is up to scale), as Wikipedia explains. I don't know any implementation to do it, but here you are a couple of papers that deal with that problem (I warn you it is not straightforward): Faugeras & Lustman 1988, Vargas & Malis 2005.
You can recover the real translation of the transformation (i.e. the distance to the plane) if you have at least a real distance between two points on the plane. If that is the case, the easiest way to go with OpenCV is to first calculate the homography, then obtain four points on the plane with their 2D coordinates and the real 3D ones (you should be able to obtain them if you have a real measurement on the plane), and using PnP finally. PnP will give you a real transformation.
Rectifying an image is defined as making epipolar lines horizontal and lying in the same row in both images. From your description I get that you simply want to warp the plane such that it is parallel to the camera sensor or the image plane. This has nothing to do with rectification - I’d rather call it an obtaining a bird’s-eye view or a top view.
I see the source of confusion though. Rectification of images usually involves multiplication of each image with a homography matrix. In your case though each point in sensor plane b:
Xb = Hab * Xa = (Hb * Ha^-1) * Xa, where Ha is homography from the plane in the world to the sensor a; Ha and intrinsic camera matrix will give you a plane orientation but I don’t see an easy way to decompose Hab into Ha and Hb.
A classic (and hard) way is to find a Fundamental matrix, restore the Essential matrix from it, decompose the Essential matrix into camera rotation and translation (up to scale), rectify both images, perform a dense stereo, then fit a plane equation into 3d points you reconstruct.
If you interested in the ground plane and you operate an embedded device though, you don’t even need two frames - a top view can be easily recovered from a single photo, camera elevation from the ground (H) and a gyroscope (or orientation vector) readings. A simple diagram below explains the process in 2D case: first picture shows how to restore Z (depth) coordinate to every point on the ground plane; the second picture shows a plot of the top view with vertical axis being z and horizontal axis x = (img.col-w/2)*Z/focal; Here is img.col is image column, w - image width, and focal is camera focal length. Note that a camera frustum looks like a trapezoid in a birds eye view.
I have a small cube with n (you can assume that n = 4) distinguished points on its surface. These points are numbered (1-n) and form a coordinate space, where point #1 is the origin.
Now I'm using a tracking camera to get the coordinates of those points, relative to the camera's coordinate space. That means that I now have n vectors p_i pointing from the origin of the camera to the cube's surface.
With that information, I'm trying to compute the affine transformation matrix (rotation + translation) that represents the transformation between those two coordinate spaces. The translation part is fairly trivial, but I'm struggling with the computation of the rotation matrix.
Is there any build-in functionality in OpenCV that might help me solve this problem?
Sounds like cvGetPerspectiveTransform is what you're looking for; cvFindHomograpy might also be helpful.
solvePnP should give you the rotation matrix and the translation vector. Try it with CV_EPNP or CV_ITERATIVE.
Edit: Or perhaps you're looking for RQ decomposition.
Look at the Stereo Camera tutorial for OpenCV. OpenCV uses a planar chessboard for all the computation and sets its Z-dimension to 0 to build its list of 3D points. You already have 3D points so change the code in the tutorial to reflect your list of 3D points. Then you can compute the transformation.