Override a method in Objective c via category - ios

The following is working in objective c:
// Base Class in ClassA.h and ClassA.m
#interface ClassA : NSObject
- (NSString *) myMethod;
#end
#implementation ClassA
- (NSString*) myMethod { return #"A"; }
#end
//Category in ClassA+CategoryB.h and ClassA+CategoryB.m
#interface ClassA (CategoryB)
- (NSString *) myMethod;
#end
#implementation ClassA (CategoryB)
- (NSString*) myMethod { return #"B"; }
#end
The question is, if I am just importing ClassA.h and send the message
[myClassA myMethod]; //returns B
why is this returning B? I am not importing ClassA+CategoryB
Even futhrer, if I did the following:
// Base Class in ClassA.h and ClassA.m
#interface ClassA : NSObject
- (NSString *) myMethod;
- (NSString *) mySecondMethod;
#end
#implementation ClassA
- (NSString*) myMethod { return #"A"; }
- (NSString *) mySecondMethod { return [self myMethod]; }
#end
//Category in ClassA+CategoryB.h and ClassA+CategoryB.m
#interface ClassA (CategoryB)
- (NSString *) myMethod;
#end
#implementation ClassA (CategoryB)
- (NSString*) myMethod { return #"B"; }
#end
and call mySecondMethod:
ClassA *a = [[ClassA alloc] init];
NSLog(#"%#",[a myMethod]);
the result will still be B although nobody knows (due to no import) of the category implementation?!
I'd excepted, only to return Bif I was importing the category...
So any hints appreciated.

Objective-C messaging is dynamic, this means that it doesn't matter if you import or not the category. The object will receive the message and execute that method.
The category is overriding your method. This means that when the runtime sends a message to that object, will always find the overridden method, no matter what you import.
If you want to ignore a category you shouldn't compile it, so you could remove the category from the compiler sources.
An alternative is subclassing.
Also read this:
Avoid Category Method Name Clashes
Because the methods declared in a category are added to an existing class, you need to be very careful about method names.
If the name of a method declared in a category is the same as a method in the original class, or a method in another category on the same class (or even a superclass), the behavior is undefined as to which method implementation is used at runtime. This is less likely to be an issue if you’re using categories with your own classes, but can cause problems when using categories to add methods to standard Cocoa or Cocoa Touch classes.
So in your case you haven't got any problem because as stated, this is less likely to happen with user defined classes. But you should definitely use subclassing instead of writing a category.

Obj-C allows you to add methods to an existing class using Categories. So if you add a method to NSString, the categoriesed method is available to NSMutableString and all classes which inherits NSString or any subclasses of NSString.
But you should avoid to Override the category.
You will not be 100% sure which method will be called. It depends on compiler.
From Apple Documentation.
Although the Objective-C language currently allows you to use a category to override methods the class inherits, or even methods declared in the class interface, you are strongly discouraged from doing so. A category is not a substitute for a subclass. There are several significant shortcomings to using a category to override methods: When a category overrides an inherited method, the method in the category can, as usual, invoke the inherited implementation via a message to super. However, if a category overrides a method that exists in the category's class, there is no way to invoke the original implementation. A category cannot reliably override methods declared in another category of the same class. This issue is of particular significance because many of the Cocoa classes are implemented using categories. A framework-defined method you try to override may itself have been implemented in a category, and so which implementation takes precedence is not defined. The very presence of some category methods may cause behavior changes across all frameworks. For example, if you override the windowWillClose: delegate method in a category on NSObject, all window delegates in your program then respond using the category method; the behavior of all your instances of NSWindow may change. Categories you add on a framework class may cause mysterious changes in behavior and lead to crashes.

You implicitly included the code defined in the category by compiling it.
If you want to avoid the category code to be executed you should remove it from your target, by removing the category implementation file.
You can do that from
Target->Build Phase->Compile Sources
That said, you should never use a category to override a method. That's a very bad practice and it's not what categories are for.

Related

Is extending a base class to overwirte something an anti-pattern in Objective-C

In objective-c.
Let's say i wish to provide a custom contentview for a UICollectionView (for whatever reason it may be).
I realise the only way to achieve it is this
#interface UICollectionViewCell (Extension)
#property(nonatomic, readwrite)UIView *contentView;
#end
#interface BaseCollectionViewCell()
#property(nonatomic, readonly)UIView *hairuiView;
#end
#implementation BaseCollectionViewCell
- (instancetype)initWithFrame:(CGRect)frame
{
self = [super initWithFrame:frame];
if (self) {
self.contentView = [[UIView alloc] init];
}
return self;
}
#end
Basically, i extend the content view to be read write, such that now i can make it to be any custom view i want.
Is this considered an anti-pattern in Objective-C
The basic idea of adding a specialized method to an existing class (UICOllectionViewCell) via a category is just fine.
So defining -(UIView*)hairuiView is cool.
However, the other stuff you're trying to do isn't cool:
(1) You cannot override a method via a category.
It's possible (although not explicitly supported) to override a method implemented in the superclass, but you cannot override a method in the class of the category.
The compiler will often allow this, but at run time only one of the methods gets implemented (either the class' original method or the one from the category), not both. And to make matters worse, there's no guarantee of which one the runtime will pick (it all depends on the order the classes are loaded).
Furthermore, [super ...] in the category will refer to the class's superclass, not the class you're adding the category to.
(2) You should not use an extension on classes you didn't write.
An extension is simply an anonymous category with some additional perks. However, you should only create an extension for a class that you wrote (and compile in that project). You can't add extensions to classes you don't own or have already been compiled. (Extensions allow additional instance variables to be defined and this can only be done once during compilation; you can't add instance variables to a class that's already defined/compiled.)
So stick to regular categories to extend existing classes. Category restrictions built into the language will generally keep you out of trouble—except for the override thing in (1).
This much is OK:
#interface BaseCollectionViewCell (HairuiView)
#property (nonatomic,readonly) UIView *hairuiView;
#end
#implementation BaseCollectionViewCell (HairuiView)
- (UIView*)hairuiView
{
...
}
#end

Can I create my own delegate in iOS [duplicate]

I know how delegates work, and I know how I can use them.
But how do I create them?
An Objective-C delegate is an object that has been assigned to the delegate property another object. To create one, you define a class that implements the delegate methods you're interested in, and mark that class as implementing the delegate protocol.
For example, suppose you have a UIWebView. If you'd like to implement its delegate's webViewDidStartLoad: method, you could create a class like this:
#interface MyClass<UIWebViewDelegate>
// ...
#end
#implementation MyClass
- (void)webViewDidStartLoad:(UIWebView *)webView {
// ...
}
#end
Then you could create an instance of MyClass and assign it as the web view's delegate:
MyClass *instanceOfMyClass = [[MyClass alloc] init];
myWebView.delegate = instanceOfMyClass;
On the UIWebView side, it probably has code similar to this to see if the delegate responds to the webViewDidStartLoad: message using respondsToSelector: and send it if appropriate.
if([self.delegate respondsToSelector:#selector(webViewDidStartLoad:)]) {
[self.delegate webViewDidStartLoad:self];
}
The delegate property itself is typically declared weak (in ARC) or assign (pre-ARC) to avoid retain loops, since the delegate of an object often holds a strong reference to that object. (For example, a view controller is often the delegate of a view it contains.)
Making Delegates for Your Classes
To define your own delegates, you'll have to declare their methods somewhere, as discussed in the Apple Docs on protocols. You usually declare a formal protocol. The declaration, paraphrased from UIWebView.h, would look like this:
#protocol UIWebViewDelegate <NSObject>
#optional
- (void)webViewDidStartLoad:(UIWebView *)webView;
// ... other methods here
#end
This is analogous to an interface or abstract base class, as it creates a special type for your delegate, UIWebViewDelegate in this case. Delegate implementors would have to adopt this protocol:
#interface MyClass <UIWebViewDelegate>
// ...
#end
And then implement the methods in the protocol. For methods declared in the protocol as #optional (like most delegate methods), you need to check with -respondsToSelector: before calling a particular method on it.
Naming
Delegate methods are typically named starting with the delegating class name, and take the delegating object as the first parameter. They also often use a will-, should-, or did- form. So, webViewDidStartLoad: (first parameter is the web view) rather than loadStarted (taking no parameters) for example.
Speed Optimizations
Instead of checking whether a delegate responds to a selector every time we want to message it, you can cache that information when delegates are set. One very clean way to do this is to use a bitfield, as follows:
#protocol SomethingDelegate <NSObject>
#optional
- (void)something:(id)something didFinishLoadingItem:(id)item;
- (void)something:(id)something didFailWithError:(NSError *)error;
#end
#interface Something : NSObject
#property (nonatomic, weak) id <SomethingDelegate> delegate;
#end
#implementation Something {
struct {
unsigned int didFinishLoadingItem:1;
unsigned int didFailWithError:1;
} delegateRespondsTo;
}
#synthesize delegate;
- (void)setDelegate:(id <SomethingDelegate>)aDelegate {
if (delegate != aDelegate) {
delegate = aDelegate;
delegateRespondsTo.didFinishLoadingItem = [delegate respondsToSelector:#selector(something:didFinishLoadingItem:)];
delegateRespondsTo.didFailWithError = [delegate respondsToSelector:#selector(something:didFailWithError:)];
}
}
#end
Then, in the body, we can check that our delegate handles messages by accessing our delegateRespondsTo struct, rather than by sending -respondsToSelector: over and over again.
Informal Delegates
Before protocols existed, it was common to use a category on NSObject to declare the methods a delegate could implement. For example, CALayer still does this:
#interface NSObject(CALayerDelegate)
- (void)displayLayer:(CALayer *)layer;
// ... other methods here
#end
This tells the compiler that any object might implement displayLayer:.
You would then use the same -respondsToSelector: approach as described above to call this method. Delegates implement this method and assign the delegate property, and that's it (there's no declaring you conform to a protocol). This method is common in Apple's libraries, but new code should use the more modern protocol approach above, since this approach pollutes NSObject (which makes autocomplete less useful) and makes it hard for the compiler to warn you about typos and similar errors.
The approved answer is great, but if you're looking for a 1 minute answer try this:
MyClass.h file should look like this (add delegate lines with comments!)
#import <BlaClass/BlaClass.h>
#class MyClass; //define class, so protocol can see MyClass
#protocol MyClassDelegate <NSObject> //define delegate protocol
- (void) myClassDelegateMethod: (MyClass *) sender; //define delegate method to be implemented within another class
#end //end protocol
#interface MyClass : NSObject {
}
#property (nonatomic, weak) id <MyClassDelegate> delegate; //define MyClassDelegate as delegate
#end
MyClass.m file should look like this
#import "MyClass.h"
#implementation MyClass
#synthesize delegate; //synthesise MyClassDelegate delegate
- (void) myMethodToDoStuff {
[self.delegate myClassDelegateMethod:self]; //this will call the method implemented in your other class
}
#end
To use your delegate in another class (UIViewController called MyVC in this case) MyVC.h:
#import "MyClass.h"
#interface MyVC:UIViewController <MyClassDelegate> { //make it a delegate for MyClassDelegate
}
MyVC.m:
myClass.delegate = self; //set its delegate to self somewhere
Implement delegate method
- (void) myClassDelegateMethod: (MyClass *) sender {
NSLog(#"Delegates are great!");
}
When using the formal protocol method for creating delegate support, I've found that you can ensure proper type checking (albeit, runtime, not compile time) by adding something like:
if (![delegate conformsToProtocol:#protocol(MyDelegate)]) {
[NSException raise:#"MyDelegate Exception"
format:#"Parameter does not conform to MyDelegate protocol at line %d", (int)__LINE__];
}
in your delegate accessor (setDelegate) code. This helps minimize mistakes.
Maybe this is more along the lines of what you are missing:
If you are coming from a C++ like viewpoint, delegates takes a little getting used to - but basically 'they just work'.
The way it works is that you set some object that you wrote as the delegate to NSWindow, but your object only has implementations (methods) for one or a few of the many possible delegate methods. So something happens, and NSWindow wants to call your object - it just uses Objective-c's respondsToSelector method to determine if your object wants that method called, and then calls it. This is how objective-c works - methods are looked up on demand.
It is totally trivial to do this with your own objects, there is nothing special going on, you could for instance have an NSArray of 27 objects, all different kinds of objects, only 18 some of them having the method -(void)setToBue; The other 9 don't. So to call setToBlue on all of 18 that need it done, something like this:
for (id anObject in myArray)
{
if ([anObject respondsToSelector:#selector(#"setToBlue")])
[anObject setToBlue];
}
The other thing about delegates is that they are not retained, so you always have to set the delegate to nil in your MyClass dealloc method.
Please! check below simple step by step tutorial to understand how Delegates works in iOS.
Delegate in iOS
I have created two ViewControllers (for sending data from one to another)
FirstViewController implement delegate (which provides data).
SecondViewController declare the delegate (which will receive data).
As a good practice recommended by Apple, it's good for the delegate (which is a protocol, by definition), to conform to NSObject protocol.
#protocol MyDelegate <NSObject>
...
#end
& to create optional methods within your delegate (i.e. methods which need not necessarily be implemented), you can use the #optional annotation like this :
#protocol MyDelegate <NSObject>
...
...
// Declaration for Methods that 'must' be implemented'
...
...
#optional
...
// Declaration for Methods that 'need not necessarily' be implemented by the class conforming to your delegate
...
#end
So when using methods that you have specified as optional, you need to (in your class) check with respondsToSelector if the view (that is conforming to your delegate) has actually implemented your optional method(s) or not.
I think all these answers make a lot of sense once you understand delegates. Personally I came from the land of C/C++ and before that procedural languages like Fortran etc so here is my 2 min take on finding similar analogues in C++ paradigm.
If I were to explain delegates to a C++/Java programmer I would say
What are delegates ?
These are static pointers to classes within another class. Once you assign a pointer, you can call functions/methods in that class. Hence some functions of your class are "delegated" (In C++ world - pointer to by a class object pointer) to another class.
What are protocols ?
Conceptually it serves as similar purpose as to the header file of the class you are assigning as a delegate class. A protocol is a explicit way of defining what methods needs to be implemented in the class who's pointer was set as a delegate within a class.
How can I do something similar in C++?
If you tried to do this in C++, you would by defining pointers to classes (objects) in the class definition and then wiring them up to other classes that will provide additional functions as delegates to your base class. But this wiring needs to be maitained within the code and will be clumsy and error prone. Objective C just assumes that programmers are not best at maintaining this decipline and provides compiler restrictions to enforce a clean implementation.
Swift version
A delegate is just a class that does some work for another class. Read the following code for a somewhat silly (but hopefully enlightening) Playground example that shows how this is done in Swift.
// A protocol is just a list of methods (and/or properties) that must
// be used by any class that adopts the protocol.
protocol OlderSiblingDelegate: class {
// This protocol only defines one required method
func getYourNiceOlderSiblingAGlassOfWater() -> String
}
class BossyBigBrother {
// The delegate is the BossyBigBrother's slave. This position can
// be assigned later to whoever is available (and conforms to the
// protocol).
weak var delegate: OlderSiblingDelegate?
func tellSomebodyToGetMeSomeWater() -> String? {
// The delegate is optional because there might not be anyone
// nearby to boss around.
return delegate?.getYourNiceOlderSiblingAGlassOfWater()
}
}
// PoorLittleSister conforms to the OlderSiblingDelegate protocol
class PoorLittleSister: OlderSiblingDelegate {
// This method is repquired by the protocol, but the protocol said
// nothing about how it needs to be implemented.
func getYourNiceOlderSiblingAGlassOfWater() -> String {
return "Go get it yourself!"
}
}
// initialize the classes
let bigBro = BossyBigBrother()
let lilSis = PoorLittleSister()
// Set the delegate
// bigBro could boss around anyone who conforms to the
// OlderSiblingDelegate protocol, but since lilSis is here,
// she is the unlucky choice.
bigBro.delegate = lilSis
// Because the delegate is set, there is a class to do bigBro's work for him.
// bigBro tells lilSis to get him some water.
if let replyFromLilSis = bigBro.tellSomebodyToGetMeSomeWater() {
print(replyFromLilSis) // "Go get it yourself!"
}
In actual practice, delegates are often used in the following situations
When a class needs to communicate some information to another class
When a class wants to allow another class to customize it
The classes don't need to know anything about each other beforehand except that the delegate class conforms to the required protocol.
I highly recommend reading the following two articles. They helped me understand delegates even better than the documentation did.
What is Delegation? – A Swift Developer’s Guide
How Delegation Works – A Swift Developer’s Guide
Ok, this is not really an answer to the question, but if you are looking up how to make your own delegate maybe something far simpler could be a better answer for you.
I hardly implement my delegates because I rarely need. I can have ONLY ONE delegate for a delegate object. So if you want your delegate for one way communication/passing data than you are much better of with notifications.
NSNotification can pass objects to more than one recipients and it is very easy to use.
It works like this:
MyClass.m file should look like this
#import "MyClass.h"
#implementation MyClass
- (void) myMethodToDoStuff {
//this will post a notification with myClassData (NSArray in this case) in its userInfo dict and self as an object
[[NSNotificationCenter defaultCenter] postNotificationName:#"myClassUpdatedData"
object:self
userInfo:[NSDictionary dictionaryWithObject:selectedLocation[#"myClassData"] forKey:#"myClassData"]];
}
#end
To use your notification in another classes:
Add class as an observer:
[[NSNotificationCenter defaultCenter] addObserver:self selector:#selector(otherClassUpdatedItsData:) name:#"myClassUpdatedData" object:nil];
Implement the selector:
- (void) otherClassUpdatedItsData:(NSNotification *)note {
NSLog(#"*** Other class updated its data ***");
MyClass *otherClass = [note object]; //the object itself, you can call back any selector if you want
NSArray *otherClassData = [note userInfo][#"myClassData"]; //get myClass data object and do whatever you want with it
}
Don't forget to remove your class as an observer if
- (void)dealloc
{
[[NSNotificationCenter defaultCenter] removeObserver:self];
}
lets say you have a class that you developed and want to declare a delegate property to be able to notify it when some event happens :
#class myClass;
#protocol myClassDelegate <NSObject>
-(void)myClass:(MyClass*)myObject requiredEventHandlerWithParameter:(ParamType*)param;
#optional
-(void)myClass:(MyClass*)myObject optionalEventHandlerWithParameter:(ParamType*)param;
#end
#interface MyClass : NSObject
#property(nonatomic,weak)id< MyClassDelegate> delegate;
#end
so you declare a protocol in MyClass header file (or a separate header file) , and declare the required/optional event handlers that your delegate must/should implement , then declare a property in MyClass of type (id< MyClassDelegate>) which means any objective c class that conforms to the protocol MyClassDelegate , you'll notice that the delegate property is declared as weak , this is very important to prevent retain cycle (most often the delegate retains the MyClass instance so if you declared the delegate as retain, both of them will retain each other and neither of them will ever be released).
you will notice also that the protocol methods passes the MyClass instance to the delegate as parameter , this is best practice in case the delegate want to call some methods on MyClass instance and also helps when the delegate declares itself as MyClassDelegate to multiple MyClass instances , like when you have multiple UITableView's instances in your ViewController and declares itself as a UITableViewDelegate to all of them.
and inside your MyClass you notify the delegate with declared events as follows :
if([_delegate respondsToSelector:#selector(myClass: requiredEventHandlerWithParameter:)])
{
[_delegate myClass:self requiredEventHandlerWithParameter:(ParamType*)param];
}
you first check if your delegate responds to the protocol method that you are about to call in case the delegate doesn't implement it and the app will crash then (even if the protocol method is required).
To create your own delegate, first you need to create a protocol and declare the necessary methods, without implementing. And then implement this protocol into your header class where you want to implement the delegate or delegate methods.
A protocol must be declared as below:
#protocol ServiceResponceDelegate <NSObject>
- (void) serviceDidFailWithRequestType:(NSString*)error;
- (void) serviceDidFinishedSucessfully:(NSString*)success;
#end
This is the service class where some task should be done. It shows how to define delegate and how to set the delegate. In the implementation class after the task is completed the delegate's the methods are called.
#interface ServiceClass : NSObject
{
id <ServiceResponceDelegate> _delegate;
}
- (void) setDelegate:(id)delegate;
- (void) someTask;
#end
#implementation ServiceClass
- (void) setDelegate:(id)delegate
{
_delegate = delegate;
}
- (void) someTask
{
/*
perform task
*/
if (!success)
{
[_delegate serviceDidFailWithRequestType:#”task failed”];
}
else
{
[_delegate serviceDidFinishedSucessfully:#”task success”];
}
}
#end
This is the main view class from where the service class is called by setting the delegate to itself. And also the protocol is implemented in the header class.
#interface viewController: UIViewController <ServiceResponceDelegate>
{
ServiceClass* _service;
}
- (void) go;
#end
#implementation viewController
//
//some methods
//
- (void) go
{
_service = [[ServiceClass alloc] init];
[_service setDelegate:self];
[_service someTask];
}
That's it, and by implementing delegate methods in this class, control will come back once the operation/task is done.
Here is a simple method to create delegates
Create Protocol in .h file. Make sure that is defined before the protocol using #class followed by the name of the UIViewController < As the protocol I am going to use is UIViewController class>.
Step : 1 : Create a new class Protocol named "YourViewController" which will be the subclass of UIViewController class and assign this class to the second ViewController.
Step : 2 : Go to the "YourViewController" file and modify it as below:
#import <UIKit/UIkit.h>
#class YourViewController;
#protocol YourViewController Delegate <NSObject>
#optional
-(void)defineDelegateMethodName: (YourViewController *) controller;
#required
-(BOOL)delegateMethodReturningBool: (YourViewController *) controller;
#end
#interface YourViewController : UIViewController
//Since the property for the protocol could be of any class, then it will be marked as a type of id.
#property (nonatomic, weak) id< YourViewController Delegate> delegate;
#end
The methods defined in the protocol behavior can be controlled with #optional and #required as part of the protocol definition.
Step : 3 :
Implementation of Delegate
#import "delegate.h"
#interface YourDelegateUser ()
<YourViewControllerDelegate>
#end
#implementation YourDelegateUser
- (void) variousFoo {
YourViewController *controller = [[YourViewController alloc] init];
controller.delegate = self;
}
-(void)defineDelegateMethodName: (YourViewController *) controller {
// handle the delegate being called here
}
-(BOOL)delegateMethodReturningBool: (YourViewController *) controller {
// handle the delegate being called here
return YES;
}
#end
//test whether the method has been defined before you call it
- (void) someMethodToCallDelegate {
if ([[self delegate] respondsToSelector:#selector(defineDelegateMethodName:)]) {
[self.delegate delegateMethodName:self];
}
}
Disclaimer: this is the Swift version of how to create a delegate.
So, what are delegates? …in software development, there are general reusable solution architectures that help to solve commonly occurring problems within a given context, these “templates”, so to speak, are best known as design patterns.
Delegates are a design pattern that allows one object to send messages to another object when a specific event happens.
Imagine an object A calls an object B to perform an action. Once the action is complete, object A should know that B has completed the task and take necessary action, this can be achieved with the help of delegates!
For a better explanation, I am going to show you how to create a custom delegate that passes data between classes, with Swift in a simple application,start by downloading or cloning this starter project and run it!
You can see an app with two classes, ViewController A and ViewController B. B has two views that on tap changes the background color of the ViewController, nothing too complicated right? well now let’s think in an easy way to also change the background color of class A when the views on class B are tapped.
The problem is that this views are part of class B and have no idea about class A, so we need to find a way to communicate between this two classes, and that’s where delegation shines.
I divided the implementation into 6 steps so you can use this as a cheat sheet when you need it.
step 1: Look for the pragma mark step 1 in ClassBVC file and add this
//MARK: step 1 Add Protocol here.
protocol ClassBVCDelegate: class {
func changeBackgroundColor(_ color: UIColor?)
}
The first step is to create a protocol, in this case, we will create the protocol in class B, inside the protocol you can create as many functions that you want based on the requirements of your implementation. In this case, we just have one simple function that accepts an optional UIColor as an argument.
Is a good practice to name your protocols adding the word delegate at the end of the class name, in this case, ClassBVCDelegate.
step 2: Look for the pragma mark step 2 in ClassVBC and add this
//MARK: step 2 Create a delegate property here.
weak var delegate: ClassBVCDelegate?
Here we just create a delegate property for the class, this property must adopt the protocol type, and it should be optional. Also, you should add the weak keyword before the property to avoid retain cycles and potential memory leaks, if you don’t know what that means don’t worry for now, just remember to add this keyword.
step 3: Look for the pragma mark step 3 inside the handleTap method in ClassBVC and add this
//MARK: step 3 Add the delegate method call here.
delegate?.changeBackgroundColor(tapGesture.view?.backgroundColor)
One thing that you should know, run the app and tap on any view, you won’t see any new behavior and that’s correct but the thing that I want to point out is that the app it’s not crashing when the delegate is called, and it’s because we create it as an optional value and that’s why it won’t crash even the delegated doesn’t exist yet. Let’s now go to ClassAVC file and make it, the delegated.
step 4: Look for the pragma mark step 4 inside the handleTap method in ClassAVC and add this next to your class type like this.
//MARK: step 4 conform the protocol here.
class ClassAVC: UIViewController, ClassBVCDelegate {
}
Now ClassAVC adopted the ClassBVCDelegate protocol, you can see that your compiler is giving you an error that says “Type ‘ClassAVC does not conform to protocol ‘ClassBVCDelegate’ and this only means that you didn’t use the methods of the protocol yet, imagine that when class A adopts the protocol is like signing a contract with class B and this contract says “Any class adopting me MUST use my functions!”
Quick note: If you come from an Objective-C background you are probably thinking that you can also shut up that error making that method optional, but for my surprise, and probably yours, Swift language does not support optional protocols, if you want to do it you can create an extension for your protocol or use the #objc keyword in your protocol implementation.
Personally, If I have to create a protocol with different optional methods I would prefer to break it into different protocols, that way I will follow the concept of giving one single responsibility to my objects, but it can vary based on the specific implementation.
here is a good article about optional methods.
step 5: Look for the pragma mark step 5 inside the prepare for segue method and add this
//MARK: step 5 create a reference of Class B and bind them through the `prepareforsegue` method.
if let nav = segue.destination as? UINavigationController, let classBVC = nav.topViewController as? ClassBVC {
classBVC.delegate = self
}
Here we are just creating an instance of ClassBVC and assign its delegate to self, but what is self here? well, self is the ClassAVC which has been delegated!
step 6: Finally, look for the pragma step 6 in ClassAVC and let’s use the functions of the protocol, start typing func changeBackgroundColor and you will see that it’s auto-completing it for you. You can add any implementation inside it, in this example, we will just change the background color, add this.
//MARK: step 6 finally use the method of the contract
func changeBackgroundColor(_ color: UIColor?) {
view.backgroundColor = color
}
Now run the app!
Delegates are everywhere and you probably use them without even notice, if you create a tableview in the past you used delegation, many classes of UIKIT works around them and many other frameworks too, they solve these main problems.
Avoid tight coupling of objects.
Modify behavior and appearance without the need to subclass objects.
Allow tasks to be handled off to any arbitrary object.
Congratulations, you just implement a custom delegate, I know that you are probably thinking, so much trouble just for this? well, delegation is a very important design pattern to understand if you want to become an iOS developer, and always keep in mind that they have one to one relationship between objects.
You can see the original tutorial here
Answer is actually answered, but I would like to give you a "cheat sheet" for creating a delegate:
DELEGATE SCRIPT
CLASS A - Where delegate is calling function
#protocol <#Protocol Name#> <NSObject>
-(void)delegateMethod;
#end
#interface <#Some ViewController#> : <#UIViewController#>
#property (nonatomic, assign) id <<#Protocol Name#>> delegate;
#end
#implementation <#Some ViewController#>
-(void)someMethod {
[self.delegate methodName];
}
#end
CLASS B - Where delegate is called
#interface <#Other ViewController#> (<#Delegate Name#>) {}
#end
#implementation <#Other ViewController#>
-(void)otherMethod {
CLASSA *classA = [[CLASSA alloc] init];
[classA setDelegate:self];
}
-delegateMethod() {
}
#end
ViewController.h
#protocol NameDelegate <NSObject>
-(void)delegateMEthod: (ArgType) arg;
#end
#property id <NameDelegate> delegate;
ViewController.m
[self.delegate delegateMEthod: argument];
MainViewController.m
ViewController viewController = [ViewController new];
viewController.delegate = self;
Method:
-(void)delegateMEthod: (ArgType) arg{
}
In my point of view create separate class for that delegate method and you can use where you want.
in my Custom DropDownClass.h
typedef enum
{
DDSTATE,
DDCITY
}DropDownType;
#protocol DropDownListDelegate <NSObject>
#required
- (void)dropDownDidSelectItemWithString:(NSString*)itemString DropDownType:(DropDownType)dropDownType;
#end
#interface DropDownViewController : UIViewController
{
BOOL isFiltered;
}
#property (nonatomic, assign) DropDownType dropDownType;
#property (weak) id <DropDownListDelegate> delegate;
#property (strong, nonatomic) NSMutableArray *array1DropDown;
#property (strong, nonatomic) NSMutableArray *array2DropDown;
after that in.m file create array with objects,
- (CGFloat)tableView:(UITableView *)tableView heightForRowAtIndexPath:(NSIndexPath *)indexPath{
CGFloat rowHeight = 44.0f;
return rowHeight;
}
-(NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
return 1;
}
- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section{
return isFiltered?[self.array1DropDown count]:[self.array2DropDown count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath {
static NSString *simpleTableIdentifier = #"TableCell";
UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:simpleTableIdentifier];
if (cell == nil) {
cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault reuseIdentifier:simpleTableIdentifier];
}
if (self.delegate) {
if (self.dropDownType == DDCITY) {
cell.textLabel.text = [self.array1DropDown objectAtIndex:indexPath.row];
}
else if (self.dropDownType == DDSTATE) {
cell.textLabel.text = [self.array2DropDown objectAtIndex:indexPath.row];
}
}
return cell;
}
- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
[self dismissViewControllerAnimated:YES completion:^{
if(self.delegate){
if(self.dropDownType == DDCITY){
[self.delegate dropDownDidSelectItemWithString:[self.array1DropDown objectAtIndex:indexPath.row] DropDownType:self.dropDownType];
}
else if (self.dropDownType == DDSTATE) {
[self.delegate dropDownDidSelectItemWithString:[self.array2DropDown objectAtIndex:indexPath.row] DropDownType:self.dropDownType];
}
}
}];
}
Here all are set for Custom delegate class.after that you can use this delegate method where you want.for example...
in my another viewcontroller import after that
create action for calling delegate method like this
- (IBAction)dropDownBtn1Action:(id)sender {
DropDownViewController *vehicleModelDropView = [[DropDownViewController alloc]init];
vehicleModelDropView.dropDownType = DDCITY;
vehicleModelDropView.delegate = self;
[self presentViewController:vehicleModelDropView animated:YES completion:nil];
}
after that call delegate method like this
- (void)dropDownDidSelectItemWithString:(NSString *)itemString DropDownType:(DropDownType)dropDownType {
switch (dropDownType) {
case DDCITY:{
if(itemString.length > 0){
//Here i am printing the selected row
[self.dropDownBtn1 setTitle:itemString forState:UIControlStateNormal];
}
}
break;
case DDSTATE: {
//Here i am printing the selected row
[self.dropDownBtn2 setTitle:itemString forState:UIControlStateNormal];
}
default:
break;
}
}
Delegate :- Create
#protocol addToCartDelegate <NSObject>
-(void)addToCartAction:(ItemsModel *)itemsModel isAdded:(BOOL)added;
#end
Send and please assign delegate to view you are sending data
[self.delegate addToCartAction:itemsModel isAdded:YES];
//1.
//Custom delegate
#protocol TB_RemovedUserCellTag <NSObject>
-(void)didRemoveCellWithTag:(NSInteger)tag;
#end
//2.
//Create a weak reference in a class where you declared the delegate
#property(weak,nonatomic)id <TB_RemovedUserCellTag> removedCellTagDelegate;
//3.
// use it in the class
[self.removedCellTagDelegate didRemoveCellWithTag:self.tag];
//4. import the header file in the class where you want to conform to the protocol
#interface MyClassUsesDelegate ()<TB_RemovedUserCellTag>
#end
//5. Implement the method in the class .m
-(void)didRemoveCellWithTag:(NSInteger)tag
{
NSLog#("Tag %d",tag);
}
Let's start with an example , if we buy a product online ,it goes through process like shipping/delivery handled by different teams.So if shipping gets completed ,shipping team should notify delivery team & it should be one to one communication as broadcasting this information would be overhead for other people / vendor might want to pass this information only to required people.
So if we think in terms of our app, an event can be an online order & different teams can be like multiple views.
Here is code consider ShippingView as Shipping team & DeliveryView as delivery team :
//Declare the protocol with functions having info which needs to be communicated
protocol ShippingDelegate : class {
func productShipped(productID : String)
}
//shippingView which shows shipping status of products
class ShippingView : UIView
{
weak var delegate:ShippingDelegate?
var productID : String
#IBAction func checkShippingStatus(sender: UIButton)
{
// if product is shipped
delegate?.productShipped(productID: productID)
}
}
//Delivery view which shows delivery status & tracking info
class DeliveryView: UIView,ShippingDelegate
{
func productShipped(productID : String)
{
// update status on view & perform delivery
}
}
//Main page on app which has both views & shows updated info on product whole status
class ProductViewController : UIViewController
{
var shippingView : ShippingView
var deliveryView : DeliveryView
override func viewDidLoad() {
super.viewDidLoad()
// as we want to update shipping info on delivery view, so assign delegate to delivery object
// whenever shipping status gets updated it will call productShipped method in DeliveryView & update UI.
shippingView.delegate = deliveryView
//
}
}
A picture is more than a thousand words :-P
The variable greeter in the function main of the Objective-C code is known as a delegate, which is no more than a C++ pointer to an object that implements a class of pure virtual functions.

How can I share properties across custom and Apple-provided classes through inheritance?

I have a few different viewControllers that need to inherit the same properties, but aren't the same type of viewController. For example, one VC is a regular UIViewController, whereas another one is a UISplitViewController. Is there any way for me to efficiently use inheritance to make sure they all have these certain properties? Or do I just need to give each one their own separate declarations?
You can achieve what you want using a category on UIViewController. You can implement the properties in the category using associated objects.
See Objective-C: Property / instance variable in category for more details.
You could add a category to UIViewController. Since UISplitViewController inherits from UIViewController, it will have all properties and methods as defined in the category as well. However, categories have two limitations:
You can't add backing instance variables. You can create properties, but they can't have instance variables backing them. That means that if you are overriding the getter (and setter, if readwrite), so that it reads (or writes) an already existing property in some way, you're good. If not, you can look at associated objects.
Overriding methods in a category is a no-no. While nothing stops you from doing it, you have undefined behavior if another category overrides that method too. You just don't know which method will get executed. If you need to override methods, subclassing UIViewController would be better. However, UISplitViewController will then not know about these properties, unless you subclass it as well and add those same properties (in which case you're maintaining these properties twice).
I'm not sure what exactly do you need. If you don't want to (or can't) use common superclass with public properties, you can always write protocol. Only difference is that, protocol don't give you common implementation, but force you to write one (so you can be sure it is there, as you asked for).
Why not set up inheritance using a shared base class and set those shared properties in the init?
//MyBaseVC.h
#interface MyBaseVC : UIViewController
#property (nonatomic, strong) NSString *myString;
#end
//VC1.h
#interface VC1 : MyBaseVC
#end
//VC2.h
#interface VC2 : MyBaseVC
#end
-----
//(MyBaseVC.m)
-(id) init {
self = [super init];
if(self){
self.myString = #"Hello world!";
}
return self;
}
// VC1.m
-(id) init {
self = [super init];
NSLog(#"%#", self.myString); // "Hello world!"
return self;
}
// VC2.m
-(id) init {
self = [super init];
NSLog(#"%#", self.myString); // "Hello world!"
return self;
}
At that point, you can directly refer to the property on the subclassed objects:
NSLog(#"%#",myVc1.myString); //"Hello world!"
Otherwise, when you reference the VCs in a more generic fashion, you can always refer to their super class (MyBaseVC) - for example, if you need to pass them as a method parameter.
//-(void)doSomethingWithVC:(MyBaseVC *)vc;
[someObj doSomethingWithVc: vc1];

How to use an internal method in a Objective-C category?

Trying to extend the capabilities from a open source project, I wrote a category for add a new method. In this new method, the category needs to access to an internal method from the original class, but the compiler says that it can't find the method (of course, is internal). Is there any way to expose this method for the category?
EDIT
I don't want to modify the original code, so I don't want to declare the internal method in the original class header file.
The code
In the original class implementation file (.m), I have this method implementation:
+(NSDictionary*) storeKitItems
{
return [NSDictionary dictionaryWithContentsOfFile:
[[[NSBundle mainBundle] resourcePath] stringByAppendingPathComponent:
#"MKStoreKitConfigs.plist"]];
}
In the category, I want to add this method:
- (void)requestProductData:(NSArray *(^)())loadIdentifierBlock
{
NSMutableArray *productsArray = [NSMutableArray array];
NSArray *consumables = [[[MKStoreManager storeKitItems] objectForKey:#"Consumables"] allKeys];
NSArray *nonConsumables = [[MKStoreManager storeKitItems] objectForKey:#"Non-Consumables"];
NSArray *subscriptions = [[[MKStoreManager storeKitItems] objectForKey:#"Subscriptions"] allKeys];
if(loadIdentifierBlock != nil) [productsArray addObjectsFromArray:loadIdentifierBlock()];
[productsArray addObjectsFromArray:consumables];
[productsArray addObjectsFromArray:nonConsumables];
[productsArray addObjectsFromArray:subscriptions];
self.productsRequest.delegate = self;
[self.productsRequest start];
}
In every line in which I call storeKitItemscompiler says: Class method "+storeKitItems" not found ...
This is trivial, make a forward declaration of the method.
Unfortunately, in obj-c, every method declaration must be inside #interface, so you can make it work in your category .m file with another internal category, e.g.
#interface MKStoreManager (CategoryInternal)
+ (NSDictionary*)storeKitItems;
#end
No implementation is needed, this only tells the compiler the method is somewhere else, similarly to #dynamic with properties.
If you are only interested in removing the warning, you can also just cast the class to id, the following should work, too:
NSDictionary* dictionary = [(id) [MKStoreManager class] storeKitItems];
However, my favorite solution is to do it a bit differently, let's assume the following example:
#interface MyClass
#end
#implementation MyClass
-(void)internalMethod {
}
#end
#interface MyClass (SomeFunctionality)
#end
#implementation MyClass (SomeFunctionality)
-(void)someMethod {
//WARNING HERE!
[self internalMethod];
}
#end
My solution is to split the class into two parts:
#interface MyClass
#end
#implementation MyClass
#end
#interface MyClass (Internal)
-(void)internalMethod;
#end
#implementation MyClass (Internal)
-(void)internalMethod {
}
#end
And include MyClass+Internal.h from both MyClass.m and MyClass+SomeFunctionality.m
A category has no access to the private methods of a class. It's no different than trying to call those methods from any other class. At least if you call the private method directly. Since Objective-C is so dynamic, you can call private methods (which is a bad idea) using other means such as using performSelector or with NSInvocation.
Again, this is a bad idea. An update to the implementation of the class could break your category.
Edit: Now that there is code posted -
Since the +storeKitItems method is not declared in the .h file, no category or other class can access the private method.
In you category implementation file you can define and informal protocol for the method
#interface YourClasses (ExternalMethods)
+(NSDictionary*) storeKitItems;
#end
This will stop the compiler from complaining about not knowing of the method storeKitItems in you category.

Unable to Call Method in Another Class

I am using forward declaration in the calling Class.
.h file in ClassTwo
#class ClassOne
#property(nonatomic,retain) ClassOne *class_One;
.m file
#synthesize class_One;
Then i am trying to call this method in ClassOne
[self.class_One callingThisMethodFromClassTwo];
On the other hand if i create a shared instance in ClassOne and use it as a class method it works
[[ClassOne Shared] nowItWorks];
Sorry if this is a silly question i am very new
try to allocate class_One instance and add #import "ClassOne.h" to headers on top of your classtwo.m
self.class_One= [[ClassOne alloc]init];
[self.class_One callingThisMethodFromClassTwo];
If [self.class_One callingThisMethodFromClassTwo]; fails... this directly refers that
Either class_One is not alloc+init-ed.
Or callingThisMethodFromClassTwo is a private/protected method.
Or callingThisMethodFromClassTwo is a class method.
I am recommending you to use Protocol/Delegate for this issue.
You Should declare a delegate protocol for your class. An example of a delegate protocol and interface for class Foo might be in this way:
#protocol MyClassDelegate
// Required means if they want to use the delegate they
// have to implement it.
#required
// method that you want to call from another class.
- (void)taskComplete:(BOOL)complete;
#end
#interface MyClass : NSObject
{
// We don't know what kind of class is going to adopt us at
//compile time, that's why this is an id
id delegate;
}
#property (nonatomic, assign) id delegate;
(void)taskComplete;
(void)doSomeTask;
Suppose you have a complex project and don’t want to create lots of
linkages between your classes, in that case delegation like this is going to be your best way to implement. It’s like having function pointers ad callbacks, but the communication goes both ways easily. Time to adopt our protocol and actually use it in a class.
myClass = [[MyClass alloc] init];
// Very important. If we don't let myClass know who the delegate
// is we'll never get the protocol methods called to us.
[myClass setDelegate:self];
In this you can call method from another class. I hope this will help you.

Resources