What's the meaning of logistic regression dataset labels? - machine-learning

I've learned the Logistic Regression for some days, and i think the logistic regression's dataset's labels needs to be 1 or 0, is it right ?
But when i lookup the libSVM library's regression dataset, i see the label values are continues number(e.g. 1.0086,1.0089 ...), did i miss something ?
Note that the libSVM library could be used for regression problem.
Thanks so much !

Contrary to its name, logistic regression is a classification algorithm and it outputs class probability conditioned on the data point. Therefore the training set labels need to be either 0 or 1. For the dataset you mentioned, logistic regression is not a suitable algorithm.
SVM is a classification algorithm and it uses the input labels -1 or 1. It is not a probabilistic algorithm and it doesn't output class probabilities. It also can be adapted to regression.

Are you using a 3rd party library or programming this yourself? Generally the labels are used as ground truth so you can see how effective your approach was.
For example if your algo is trying to predict what a particular instance is it might output -1, the ground truth label will be +1 which means you did not successfully classify that particular instance.

Note that "regression" is a general term. To say someone will perform regression analysis doesn't necessarily tell you what algorithm they will be using, nor all of the nature of the data sets. All it really tells you is that you have a set of samples with features which you want to use to predict a single outcome value (a model for conditional probability).
One major difference between logistic regression and linear regression is that the former is usually trained on categorical, binary-labeled sample sets; while the latter is trained on real-labeled (ℝ) sample sets.
Any time your labels are real valued, it means you're probably going to use linear regression or similar, or else convert those real valued labels to categorical labels (e.g. via thresholds or bins) if you want to in fact use logistic regression. There is potentially a big difference in the quality and interpretation of your results though, if you try to convert from one such problem setup to another.
See also Regression Analysis.

Related

Which SMOTE algorithm should I use for Augmentation of Time Series dataset?

I am working on a Time Series Dataset where i want to do forcasting and prediction both. So, if you have any suggestion please share. Thank You!
T-Smote
This allows one to both impute fully missing observations to allow uniform time series classification across the entire data and, in special cases, to impute individually missing features. To do so, we slightly generalize the well-known class imbalance algorithm SMOTE to allow component wise nearest neighbor interpolation that preserves correlations when there are no missing features. We visualize the method in the simplified setting of 2-dimensional uncoupled harmonic oscillators. Next, we use tSMOTE to train an Encoder/Decoder long-short term memory (LSTM) model with Logistic Regression for predicting and classifying distinct trajectories of different 2D oscillators.

Can logistic and lineair regression produce a prediction on a scale?

I currently have a dataset of drawings, each drawing being represented by some features. Each feature (independent variable) is a continuous number. None of the drawings have a label as of yet, which is why I am planning to start a sort of questionaire with people. However, before I can correctly setup such questionaire, I should have an idea of what kind of labels I should use for my training data.
At first thought, I was thinking about letting people rate the drawings on a scale, for example from 1 to 5 with 1 being bad, 3 being average and 5 being good. Alternatively, I could also reduce the question to a simple good or bad question. The latter would mean I lose some valuable information, but the dependent variable could then be considered 'binary'.
Using the training data I then composed, I would need to have a machine learning algorithm (model) which given a drawing, predicts if the drawing is good or not. Ideally, I would have some way of tuning the strictness in this prediction. For example, the model could instead of simply predicting 'good' or 'bad', predict the likelyhood of a painting being good on a scale of 0 to 1. I could then say "Well, let's say all paintings which are 70% likely to be good, are considered as good". Another example would be that the model predicts the goodness using the same categorical values the people used to rate the drawing initially. So it would either predict the drawing being a 1, 2, 3, 4 or 5. Similar to my first example, I could then say "Well, all paintings which are rated at least a 4, are considered good paintings" and tune this threshhold to my liking.
After doing some research, I came up with logistic and linear regression being good candidates. However, if which of the two would be the best for my scenario? Equally important, how would I need to format my labels? Just simple 0's and 1's or a scale?
You could use a 1 vs all representation if you wanted to use a multi-class categorical classification:
Essentially, you train 1 classifier for every category you have (you have 10 categories, so you have 10 classifiers) and then each classifier is just trained to predict whether or not the category belongs to each specific class.
There are alternative ways to make multi-class logistic regression work that only require training a single model, such as by using categorical cross entropy, but given that you'd like to use ordinal data, a linear regression used as a regression model is likely more ideal. You'd predict a value between 1 and 10 and then just round to the nearest integer. This way you aren't penalizing close guesses as much as far away guesses.
what keeps you from using a logistic regression model. Due to a lack of better dataset I used the standard diabetes data. The target variable is an integer between 50 and 200. I normalised the data between [-1,1] such that I can use sigmoid as activation function. For the loss I decided to use
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import MaxPooling2D, Input, Convolution2D
import numpy as np
from sklearn import datasets
diabetes = datasets.load_diabetes()
x_train=diabetes.data
y_train=2*(diabetes.target-min(diabetes.target))/(max(diabetes.target)-min(diabetes.target))-1
inputs = tf.keras.Input(shape=(x_train.shape[1],))
outputs = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)(inputs)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.compile(optimizer=tf.keras.optimizers.Adam(), # Optimizer
loss=tf.keras.losses.MSE,
metrics=['sparse_categorical_accuracy'])
history = model.fit(x_train, y_train,
batch_size=64,
epochs=300,
validation_data=(x_train, y_train))
You could also use a linear regression model. There you only need to replace the activation function by linear. However I think the squashing character, besides ensuring hat there is no rating larger 1 or smaller -1.
A last alternative would be to train pair-wise preference. The idea is to show the human two drawings and ask which one he likes more. Then build a binary model, e.g., logistic regression. This approach appears preferable to me as it is easier to answer for the human

How to apply genetic algorithm to linear regression datasets?

can we apply only genetic algorithm model on a dataset for linear regression?
for example:
assume we have a dataset with features such as toffle score, cgpa, gre score ,etc and output values of chance of admission. In this we have to predict the chances of admission based on the features.Link to the dataset
Lot of things are possible by using genetic algorithms. You just have to be sore that you are using correct dataset, you have to know what you want to get from it and last but not least, you have to know what exactly are you doing, which means you need to have correct fitness function :)

Ordinal logistic regression how it differs from logistic regression?

I am sure this question may not be in the brilliant category. But Somehow to learn machine learning i may start with stupid question. So, please.
I understood the terms of regressions partially.
The regression essentially give the idea of the relationship between the dependent and independent variables.
If the dependent variable is continuous and if you see the linear relation between dependent and independent, then linear regression is a way to go.
A slight change now. If the dependent value could be something like Binary value (Y/N), ie: the output value is binomial distribution, then logistic regression is a way to go that which demands non linear relationship between dependent and independent.
So far..Please correct me if i am wrong.
Now my question is with respect to ordinal logistic regression.
I have started looking at the below link for reference
https://statistics.laerd.com/spss-tutorials/ordinal-regression-using-spss-statistics.php
Where it is mentioned that " It can be considered as either a generalisation of multiple linear regression or as a generalisation of binomial logistic regression".
Could someone help me understand this above statement with examples?
Logistic regression can be considered as an extension of linear regression. But instead of predicting continuous variables, it predicts discrete variables by introducing the computation of an activation function. So, you are asked to produce a discriminatory function that based on X you produce a function that outputs f: [1,2, ..., k] where k is the number of classes that your problem presents. Now X can be composed of features that are both continuous or discrete. It does not matter, just make sure you apply pre-processing to them.
The base case for logistic regression is finding the decision boundary that divides two classes. But in order to add more classes, you have to implement another approach. There are several: softmax (https://en.wikipedia.org/wiki/Softmax_function), one-vs-all (https://en.wikipedia.org/wiki/Multiclass_classification), etc.
Finally, answering your question about ordinal logistic regression is an extension of logistic regression. But considers the order of the output variables such as in the case of a test. Take a look online for examples.

Ways to improve the accuracy of a Naive Bayes Classifier?

I am using a Naive Bayes Classifier to categorize several thousand documents into 30 different categories. I have implemented a Naive Bayes Classifier, and with some feature selection (mostly filtering useless words), I've gotten about a 30% test accuracy, with 45% training accuracy. This is significantly better than random, but I want it to be better.
I've tried implementing AdaBoost with NB, but it does not appear to give appreciably better results (the literature seems split on this, some papers say AdaBoost with NB doesn't give better results, others do). Do you know of any other extensions to NB that may possibly give better accuracy?
In my experience, properly trained Naive Bayes classifiers are usually astonishingly accurate (and very fast to train--noticeably faster than any classifier-builder i have everused).
so when you want to improve classifier prediction, you can look in several places:
tune your classifier (adjusting the classifier's tunable paramaters);
apply some sort of classifier combination technique (eg,
ensembling, boosting, bagging); or you can
look at the data fed to the classifier--either add more data,
improve your basic parsing, or refine the features you select from
the data.
w/r/t naive Bayesian classifiers, parameter tuning is limited; i recommend to focus on your data--ie, the quality of your pre-processing and the feature selection.
I. Data Parsing (pre-processing)
i assume your raw data is something like a string of raw text for each data point, which by a series of processing steps you transform each string into a structured vector (1D array) for each data point such that each offset corresponds to one feature (usually a word) and the value in that offset corresponds to frequency.
stemming: either manually or by using a stemming library? the popular open-source ones are Porter, Lancaster, and Snowball. So for
instance, if you have the terms programmer, program, progamming,
programmed in a given data point, a stemmer will reduce them to a
single stem (probably program) so your term vector for that data
point will have a value of 4 for the feature program, which is
probably what you want.
synonym finding: same idea as stemming--fold related words into a single word; so a synonym finder can identify developer, programmer,
coder, and software engineer and roll them into a single term
neutral words: words with similar frequencies across classes make poor features
II. Feature Selection
consider a prototypical use case for NBCs: filtering spam; you can quickly see how it fails and just as quickly you can see how to improve it. For instance, above-average spam filters have nuanced features like: frequency of words in all caps, frequency of words in title, and the occurrence of exclamation point in the title. In addition, the best features are often not single words but e.g., pairs of words, or larger word groups.
III. Specific Classifier Optimizations
Instead of 30 classes use a 'one-against-many' scheme--in other words, you begin with a two-class classifier (Class A and 'all else') then the results in the 'all else' class are returned to the algorithm for classification into Class B and 'all else', etc.
The Fisher Method (probably the most common way to optimize a Naive Bayes classifier.) To me,
i think of Fisher as normalizing (more correctly, standardizing) the input probabilities An NBC uses the feature probabilities to construct a 'whole-document' probability. The Fisher Method calculates the probability of a category for each feature of the document then combines these feature probabilities and compares that combined probability with the probability of a random set of features.
I would suggest using a SGDClassifier as in this and tune it in terms of regularization strength.
Also try to tune the formula in TFIDF you're using by tuning the parameters of TFIFVectorizer.
I usually see that for text classification problems SVM or Logistic Regressioin when trained one-versus-all outperforms NB. As you can see in this nice article by Stanford people for longer documents SVM outperforms NB. The code for the paper which uses a combination of SVM and NB (NBSVM) is here.
Second, tune your TFIDF formula (e.g. sublinear tf, smooth_idf).
Normalize your samples with l2 or l1 normalization (default in Tfidfvectorization) because it compensates for different document lengths.
Multilayer Perceptron, usually gets better results than NB or SVM because of the non-linearity introduced which is inherent to many text classification problems. I have implemented a highly parallel one using Theano/Lasagne which is easy to use and downloadable here.
Try to tune your l1/l2/elasticnet regularization. It makes a huge difference in SGDClassifier/SVM/Logistic Regression.
Try to use n-grams which is configurable in tfidfvectorizer.
If your documents have structure (e.g. have titles) consider using different features for different parts. For example add title_word1 to your document if word1 happens in the title of the document.
Consider using the length of the document as a feature (e.g. number of words or characters).
Consider using meta information about the document (e.g. time of creation, author name, url of the document, etc.).
Recently Facebook published their FastText classification code which performs very well across many tasks, be sure to try it.
Using Laplacian Correction along with AdaBoost.
In AdaBoost, first a weight is assigned to each data tuple in the training dataset. The intial weights are set using the init_weights method, which initializes each weight to be 1/d, where d is the size of the training data set.
Then, a generate_classifiers method is called, which runs k times, creating k instances of the Naïve Bayes classifier. These classifiers are then weighted, and the test data is run on each classifier. The sum of the weighted "votes" of the classifiers constitutes the final classification.
Improves Naive Bayes classifier for general cases
Take the logarithm of your probabilities as input features
We change the probability space to log probability space since we calculate the probability by multiplying probabilities and the result will be very small. when we change to log probability features, we can tackle the under-runs problem.
Remove correlated features.
Naive Byes works based on the assumption of independence when we have a correlation between features which means one feature depends on others then our assumption will fail.
More about correlation can be found here
Work with enough data not the huge data
naive Bayes require less data than logistic regression since it only needs data to understand the probabilistic relationship of each attribute in isolation with the output variable, not the interactions.
Check zero frequency error
If the test data set has zero frequency issue, apply smoothing techniques “Laplace Correction” to predict the class of test data set.
More than this is well described in the following posts
Please refer below posts.
machinelearningmastery site post
Analyticvidhya site post
keeping the n size small also make NB to give high accuracy result. and at the core, as the n size increase its accuracy degrade,
Select features which have less correlation between them. And try using different combination of features at a time.

Resources