Zend Di vs ServiceManager dependency injection containers - zend-framework2

What is DI for and what is its use case, when we have ServiceManager?
They appear to be similar since in configuration files for both zend-di and zend-servicemanager we can set up some options such as aliases and invokables.
I am trying to get a better understanding of what is happening behind the scenes with these components, and documentation did not give me enough info.
Could you please tell me what the difference is and when I should use Di instead of ServiceManager?

Zend\DI relies on magic, like reflections, to detect and inject dependencies while service manager uses user provided factories. That is main difference.
Di sort of deprecated in community in favor of SM due to complexity, debugging and performance issues.
It supposed to be good for RAD, but you need above average knowledge to use it properly.
On the other hand SM have pretty verbose and explicit wiring, you can open your code year later and easily figure out what is going on.

Zend\Di takes care of wiring your classes together, whereas with Zend\ServiceManager you have to wire things manually and write a factory closure for every class you want to instantiate.
Zend\ServiceManager is much faster since it does not rely on the slow Reflection API. On the other hand, writing closures for large applications with hundreds of classes becomes very tedious. Keeping your closures up-to-date will get trickier as your application grows.
To address this problem, I have written a Zend Framework 2 module called ZendDiCompiler. It relies on Zend\Di to scan your code and auto-generates factory code to instantiate your classes. You get the best of both components: the power of Zend\Di and the performance of Zend\ServiceManager.
I have put quite a bit of work into the documentation of ZendDiCompiler and some easy and more advanced usage examples are provided, too.

Basically the difference is as follows:
Zend\ZerviceManager = Factory driven IoC Container
Zend\Di = Autowiring IoC implementation
Zend\Di was Refactored for Version 3. Its behaviour now more solid and predictable than v2 and it is designed to integrate seamlessly into zend-servicemanager to provide auto-wiring capabilities (no more odd magic). Since it uses PHP's reflection api to resolve dependencies it is slower than a factory driven approach. Therefore version 3 comes with an AoT compiler to create a pre-resolved Injector that omits the use of Reflection. An additional benefit: The generated factories can also be used with Zend\ServiceManager directly.
There is a guide for using AoT with both components: https://zendframework.github.io/zend-di/cookbook/aot-guide/

Related

Why AOP and DI aren't used together very often

I am confused about this line
Aspect-Oriented Programming and Dependency Injection are very different concepts, but there are limited cases where they fit well together.
from this website
http://www.postsharp.net/blog/post/Aspect-Oriented-Programming-vs-Dependency-Injection
I understand the advantages of DI over AOP, but why aren't they used together more often? why are there only limited cases where they fit together? Is it because of the way AOP is compiled, that makes using both difficult?
How do you define "limited cases"? I myself always use AOP and DI together.
There are basically three ways to apply AOP, which are:
Using code weaving tools such as PostSharp.
Using dynamic interception tools such as Castle Dynamic Proxy.
Using decorators.
The use of DI with code weaving tools doesn't mix and match very well, and I think that's the reason that the Postsharp site states that "there are limited cases where they fit well together". One reason it doesn't mix and match is because Dependency Injection is about loose coupling, while code weaving hard couples your code and the aspects together at compile time. From a perspective of DI, code weaving becomes an anti-pattern. In section 11.2 of our book, Mark and I make this argument very clear. In summary we state:
The aim of DI is to manage Volatile Dependencies by introducing Seams into your application. Theis enables you to centralize the composition of your object graphs inside the Composition Root.
This is the complete opposite of hat you achieve when applying compile-time weaving: is causes Volatile Dependencies to be coupled to your code at compile-time. This makes it impossible to use proper DI techniques and to safely compose complete object graphs in the application's Composition Root. It's for this reason that we say that compile-time weaving is the opposite of DI–using compile-time weaving on Volatile Dependencies is an anti-pattern. [page 355]
If you use dynamic interception, however, which means applying cross-cutting concerns at runtime by generating decorators on the fly it works great with DI and it is integrated easily with most DI libraries out there, and can be done as well when using Pure DI, which is something we demonstrate in section 11.1.
My personal preference is to use decorators. My systems are designed around a few well defined generic abstractions, and this allows me to apply cross-cutting concerns at almost all places that are important to my system. That leaves me in very rare cases with a few spots where decorators don't work very well, but this is almost always caused by design flaws. Either by my own limitations as a developer or by design flaws in the .NET framework or some other tool. One famous design flaw is the INotifyPropertyChanged interface. You might have guessed it, but in our book we describe this method in a lot of detail. We spend a complete chapter (10) on this topic.

Implementing cross-cutting concepts into LOB/DI application

I am currently creating a small personal windows (desktop) .NET LOB application and I want to use the opportunity to increase my knowledge and experience with DI. I've separated my application into model, DAO and GUI parts but I am wondering how to implement some cross-cutting concepts such as:
currently logged on user - used for:
asserting rights - in some parts of the application I check if the user has necessary rights
auditing - recording user actions into a separate database table
etc
current application parameters (loaded from configuration file or table) - used for:
defining business strategy
defining UI (theme for example)
etc
logging to file/database log - used for:
logging UI actions (clicking on buttons etc.)
logging business processes (results of calculations, strategy decisions etc.)
logging infrastructure stuff (SQL used to for CRUD operations)
etc
At the moment I can think of several ways to provide this information:
Using static properties - UserEntity.Current, Configuration.Current, Logger.Current, etc.
Pros:
Simple to implement
Simple to use
Cons:
Gets messy
It is unclear which part of the application uses what
Can not be used if you need finer granularity (for example if for some processes in the application you need to override current values)
Using DI - giving each class which needs this information a property/ctor parameter
Pros:
It is clear for each class what it needs
It is easy to unit test
Cons:
It just seems to explode constructors
Makes problems if class needs to have a default constructors
Difficult to setup when classes get instantiated by 3rd party (XAML)
Using ServiceLocator
Pros:
Easy to setup
Easy to use
Cons:
It is unclear which part of the application uses what
Difficult to setup finer granularity (but not impossible)
I am currently leaning towards ServiceLocator as I've worked with it before and it worked quite nice. However I am concerned about loss of control. It gets very easy to just reach for the service locator instead of trying to fix a design problem.
Can somebody provide their experiences/knowledge?
Sounds like perfect case to start with aspect-oriented approach. Your application's LOB will be designed according to business functional requirements that has been cross-cutted with different non-functional requirements: authentication, audit, logging, etc.
In same time, some of current application requirements could be solved by dependency-injection. To start, I recommend first to identify composition root. For example, in wpf applications it’s the Application.OnStartup method. In case if you are able to identify composition root it is better to avoid service-locator. Service locator will add unneeded complexity while maintaining and testing, because it could resolve literally anything, thus dependency management will be complicated.
Next step, to decide: should dependency injection and aspect-oriented approaches be separated or combined. Both approaches has benefits and drawbacks.
While choosing separated approach you could use postsharp with a lot of benefits: great samples and documentation, community and ready to use aspects. But nothing come for free, postsharp has only limited number of features in free version and complicated integration with continues-integration.
Another solution: combine dependency-injection with dynamic-proxy. As long as you follow conception: program to an interface, not an implementation — you will achieve all requirements. Benefits: one place to wire all components. There are two major drawbacks: first dynamic proxy is quite limited itself, second — integration between dependency injection container and dynamic proxy — for some container it already exists, for others not. Example: Ninject extension Interception, or StructureMap and Interception.
I recommend you to take a look at following resources to find more answers yourself:
* Book AOP in .NET: Practical Aspect-Oriented Programming by Matthew D. Groves: first chapter available for free
* Book Dependency Injection in .NET by Mark Seemann: well-written book about dependency injection, and chapter #9 dedicated to interception, approach that I found quite useful in cases that you had described in question. Author of book also has an excellent blog dedicated to dependency injection and video about aspect-oriented programming with dependency Injection.

Functional dependency injection

When writing object-oriented software, I use dependency injection a lot:
to compose together high-level functionality from lower-level capabilities: my account management service uses repositories and validation services rather than implementing them itself.
to isolate components from their dependencies: my account management service uses its dependencies through interfaces, so that I can swap implementations, mock for unit testing and so on.
What patterns exist in functional programming languages to achieve these goals?
edit: a commenter rightly asks: "what about just passing round functions?". I think that the following comment about function grouping hits the nail on the head - a service is a collection of functions with a shared set of dependencies that I can handle as an atomic group.
In Clojure it seems like protocols solve this nicely, but I was really wondering how the problem is solved more generally...
Some time ago I've read a post describing how dependency injection can be seen as currying in functional programming. I think it's very interesting, and it gives a good perspective on the topic.
At the small scale, things like currying and functions-as-parameters cut down the need for module dependencies. At a larger scale, things like Standard ML functors are very useful for this purpose. Racket has a system called units that does a good job on this too.
I developed a little library which I found helpful for DI in a functional-inspired (JavaScript) environment, it's nothing special, just a bit method I like.

Dependency Injection Frameworks: Why do I care?

I was reading over Injection by Hand and Ninjection (as well as Why use Ninject ). I encountered two pieces of confusion:
The inject by hand technique I am already familiar with, but I am not familiar with Ninjection, and thus am not sure how the complete program would work. Perhaps it would help to provide a complete program rather than, as is done on that page, showing a program broken up into pieces
I still don't really get how this makes things easier. I think I'm missing something important. I can kind of see how an injection framework would be helpful if you were creating a group of injections and then switching between two large groups all at once (this is useful for mocking, among other things), but I think there is more to it than that. But I'm not sure what. Or maybe I just need more examples of why this is exciting to drive home the point.
When injecting your dependencies without a DI framework you end up with arrow code all over your application telling classes how to build their dependencies.
public Contact()
: this(new DataGateWay())
{
}
But if you use something like Ninject, all the arrow code is in one spot making it easier to change a dependency for all the classes using it.
internal class ProductionModule : StandardModule
{
public override void Load()
{
Bind<IDataGateway>().To<DataGateWay>();
}
}
I still don't really get how this makes things easier. I think I'm missing something important.
Wouldn't it would be great if we only had to develop discrete components where each provided distinct functionality we could easily understand, re-use and maintain. Where we only worked on components.
What prevents us from doing so, is we need some infrastructure that can somehow combine and manage these components into a working application automatically. Infrastructure that does this is available to us - an IOC framework.
So an IOC framework isn't about managing dependencies or testing or configuration. Instead it is about managing complexity, by enabling you to only work and think about components.
It allows you to easily test your code by mocking the interfaces that you need for a particular code block. It also allows you to easily swap functionality without breaking other parts of the code.
It's all about cohesion and coupling.
You probably won't see the benefit on small projects, but once you get past small it becomes really apparent when you have to make changes to the system. It's a breeze when you've used DI.
I really like the autowiring aspect of some frameworks ... when you do not have to care about what your types need to be instantiated.
EDIT:
I read this article by Ayende # Rahien. And I really support his point.
Dependency injection using most frameworks can be configured at runtime, without requiring a recompile.
Dependency injection can get really interesting if you get your code to the point where there are very few dependencies in the code at all. Some dependency injection frameworks will allow you define your dependencies in a configuration file. This can be very useful if you need a really flexible piece of software that needs to be changed without modifying the code. For example, workflow software is a prime candidate for this type of solution.
Dependency Injection is essential for the Component Driven Development. The latter allows to build really complex applications in a much more efficient and reliable manner.
Also, it allows to separate common cross-cutting concerns cleanly from the other code (this results in more reusable and flexible codebase).
Related links:
Inversion of Control and Dependency Injection - Wiki
Component-Driven Development - Wiki
Cross-cutting concerns - Wiki

IoC Container Configuration/Registration

I absolutely need to use an IoC container for decoupling dependencies in an ever increasingly complex system of enterprise services. The issue I am facing is one related to configuration (a.k.a. registration). We currently have 4 different environments -- development to production and in between. These environments have numerous configurations that slightly vary from environment to environment; however, in all cases that I can currently think of, dependencies between components do not differ from environment to environment, though I could have missed something and/or this could obviously change.
So, the ultimate question is, does anybody have a similar experience using an IoC framework? Or, can anybody recommend one framework over another that would provide flexible registration be it through some sort of convention or simplified configuration information? Would I still be able to benefit from a fluent interface or am I stuck with XML -- I'd like to avoid XML-hell.
Edit: This is a .Net environment and I have been looking at Windsor, Ninject and Autofac. They all seem to now support both methods of registration (fluent and XML), though Autofac's support for lambda expressions seems to be a little different than the others. Anybody use that in a similar multi-deployment environment?
If you want to abstract your container, and be able to use different ones, look into having it injectable in a way I tried to do it here
I use Ninject. I like the fact that I don't have to use Xml to configure the dependencies. I can just use straight up C# code. There are multiple ways of doing it also. I know other libraries have that feature, but Ninject offers fast instantiation, it is pretty lightweight, it has conditional binding, supports compact framework, and it supports Silverlight, 2.0. I also use a wrapper on top of it, in case I do switch it out for another framework in the future. You should definitely try Ninject when deciding on a framework.
I'm not sure whether it will suit your particular case, you didn't mention what platform you're working in, but I've had great success with Castle Windsor's IOC framework. The dependencies are setup in the config file (it's a .NET framework)
Look at Ayendes rhino commons. He uses an abstraction over the IoC container. So that you can switch containers whenever you want. Something like container.Resolve is always there in every container.
I use Structuremap to do the dirty work it has a fluent interface and the XML things and it is powerfull enough for most things you want to do. Each one has it's own pros and cons so a little abstraction so you can easily switch (you never know how long they are going to be around) is good. For the rest I think Spring.Net, Castle windsor, Ninject and StructureMap aren't that far apart anymore.

Resources