Determining camera motion with fundamental matrix opencv - opencv

I tried determining camera motion from fundamental matrix using opencv. I'm currently using optical flow to track movement of points in every other frame. Essential matrix is being derived from fundamental matrix and camera matrix. My algorithm is as follows
1 . Use goodfeaturestotrack function to detect feature points from frame.
2 . Track the points to next two or three frames(Lk optical flow), during which calculate translation and rotation vectorsusing corresponding points
3 . Refresh points after two or three frame (use goodfeaturestotrack). Once again find translation and rotation vectors.
I understand that i cannot add the translation vectors to find the total movement from the beginning as the axis keep changing when I refresh points and start fresh tracking all over again. Can anyone please suggest me how to calculate the summation of movement from the origin.

You are asking is a typical visual odometry problem. concatenate the transformation matrix SE3 of the Lie-Group.
You just multiply the T_1 T_2 T_3 till you get T_1to3
You can try with this code https://github.com/avisingh599/mono-vo/blob/master/src/visodo.cpp
for(int numFrame=2; numFrame < MAX_FRAME; numFrame++)
if ((scale>0.1)&&(t.at<double>(2) > t.at<double>(0)) && (t.at<double>(2) > t.at<double>(1))) {
t_f = t_f + scale*(R_f*t);
R_f = R*R_f;
}
Its simple math concept. If you feel difficult, just look at robotics forward kinematic for easier understanding. Just the concatenation part, not the DH algo.
https://en.wikipedia.org/wiki/Forward_kinematics

write all of your relative camera position in a 4x4 transformation matrix and then multiply each matrix one after another. For example:
Frame 1 location with respect to origin coordinate system = [R1 T1]
Frame 2 location with respect to Frame 1 coordinate system = [R2 T2]
Frame 3 location with respect to Frame 2 coordinate system = [R3 T3]
Frame 3 location with respect to origin coordinate system =
[R1 T1] * [R2 T2] * [R3 T3]

Related

How to get the transformation matrix of a 3d model to object in a 2d image

Given an object's 3D mesh file and an image that contains the object, what are some techniques to get the orientation/pose parameters of the 3d object in the image?
I tried searching for some techniques, but most seem to require texture information of the object or at least some additional information. Is there a way to get the pose parameters using just an image and a 3d mesh file (wavefront .obj)?
Here's an example of a 2D image that can be expected.
FOV of camera
Field of view of camera is absolute minimum to know to even start with this (how can you determine how to place object when you have no idea how it would affect scene). Basically you need transform matrix that maps from world GCS (global coordinate system) to Camera/Screen space and back. If you do not have a clue what about I am writing then perhaps you should not try any of this before you learn the math.
For unknown camera you can do some calibration based on markers or etalones (known size and shape) in the view. But much better is use real camera values (like FOV angles in x,y direction, focal length etc ...)
The goal for this is to create function that maps world GCS(x,y,z) into Screen LCS(x,y).
For more info read:
transform matrix anatomy
3D graphic pipeline
Perspective projection
Silhouette matching
In order to compare rendered and real image similarity you need some kind of measure. As you need to match geometry I think silhouette matching is the way (ignoring textures, shadows and stuff).
So first you need to obtain silhouettes. Use image segmentation for that and create ROI mask of your object. For rendered image is this easy as you van render the object with single color without any lighting directly into ROI mask.
So you need to construct function that compute the difference between silhouettes. You can use any kind of measure but I think you should start with non overlapping areas pixel count (it is easy to compute).
Basically you count pixels that are present only in one ROI (region of interest) mask.
estimate position
as you got the mesh then you know its size so place it in the GCS so rendered image has very close bounding box to real image. If you do not have FOV parameters then you need to rescale and translate each rendered image so it matches images bounding box (and as result you obtain only orientation not position of object of coarse). Cameras have perspective so the more far from camera you place your object the smaller it will be.
fit orientation
render few fixed orientations covering all orientations with some step 8^3 orientations. For each compute the difference of silhouette and chose orientation with smallest difference.
Then fit the orientation angles around it to minimize difference. If you do not know how optimization or fitting works see this:
How approximation search works
Beware too small amount of initial orientations can cause false positioves or missed solutions. Too high amount will be slow.
Now that was some basics in a nutshell. As your mesh is not very simple you may need to tweak this like use contours instead of silhouettes and using distance between contours instead of non overlapping pixels count which is really hard to compute ... You should start with simpler meshes like dice , coin etc ... and when grasping all of this move to more complex shapes ...
[Edit1] algebraic approach
If you know some points in the image that coresponds to known 3D points (in your mesh) then you can along with the FOV of the camera used compute the transform matrix placing your object ...
if the transform matrix is M (OpenGL style):
M = xx,yx,zx,ox
xy,yy,zy,oy
xz,yz,zz,oz
0, 0, 0, 1
Then any point from your mesh (x,y,z) is transformed to global world (x',y',z') like this:
(x',y',z') = M * (x,y,z)
The pixel position (x'',y'') is done by camera FOV perspective projection like this:
y''=FOVy*(z'+focus)*y' + ys2;
x''=FOVx*(z'+focus)*x' + xs2;
where camera is at (0,0,-focus), projection plane is at z=0 and viewing direction is +z so for any focal length focus and screen resolution (xs,ys):
xs2=xs*0.5;
ys2=ys*0.5;
FOVx=xs2/focus;
FOVy=ys2/focus;
When put all this together you obtain this:
xi'' = ( xx*xi + yx*yi + zx*zi + ox ) * ( xz*xi + yz*yi + zz*zi + ox + focus ) * FOVx
yi'' = ( xy*xi + yy*yi + zy*zi + oy ) * ( xz*xi + yz*yi + zz*zi + oy + focus ) * FOVy
where (xi,yi,zi) is i-th known point 3D position in mesh local coordinates and (xi'',yi'') is corresponding known 2D pixel positions. So unknowns are the M values:
{ xx,xy,xz,yx,yy,yx,zx,zy,zz,ox,oy,oz }
So we got 2 equations per each known point and 12 unknowns total. So you need to know 6 points. Solve the system of equations and construct your matrix M.
Also you can exploit that M is a uniform orthogonal/orthonormal matrix so vectors
X = (xx,xy,xz)
Y = (yx,yy,yz)
Z = (zx,zy,zz)
Are perpendicular to each other so:
(X.Y) = (Y.Z) = (Z.X) = 0.0
Which can lower the number of needed points by introducing these to your system. Also you can exploit cross product so if you know 2 vectors the thirth can be computed
Z = (X x Y)*scale
So instead of 3 variables you need just single scale (which is 1 for orthonormal matrix). If I assume orthonormal matrix then:
|X| = |Y| = |Z| = 1
so we got 6 additional equations (3 x dot, and 3 for cross) without any additional unknowns so 3 point are indeed enough.

Measure distance to object with a single camera in a static scene

let's say I am placing a small object on a flat floor inside a room.
First step: Take a picture of the room floor from a known, static position in the world coordinate system.
Second step: Detect the bottom edge of the object in the image and map the pixel coordinate to the object position in the world coordinate system.
Third step: By using a measuring tape measure the real distance to the object.
I could move the small object, repeat this three steps for every pixel coordinate and create a lookup table (key: pixel coordinate; value: distance). This procedure is accurate enough for my use case. I know that it is problematic if there are multiple objects (an object could cover an other object).
My question: Is there an easier way to create this lookup table? Accidentally changing the camera angle by a few degrees destroys the hard work. ;)
Maybe it is possible to execute the three steps for a few specific pixel coordinates or positions in the world coordinate system and perform some "calibration" to calculate the distances with the computed parameters?
If the floor is flat, its equation is that of a plane, let
a.x + b.y + c.z = 1
in the camera coordinates (the origin is the optical center of the camera, XY forms the focal plane and Z the viewing direction).
Then a ray from the camera center to a point on the image at pixel coordinates (u, v) is given by
(u, v, f).t
where f is the focal length.
The ray hits the plane when
(a.u + b.v + c.f) t = 1,
i.e. at the point
(u, v, f) / (a.u + b.v + c.f)
Finally, the distance from the camera to the point is
p = √(u² + v² + f²) / (a.u + b.v + c.f)
This is the function that you need to tabulate. Assuming that f is known, you can determine the unknown coefficients a, b, c by taking three non-aligned points, measuring the image coordinates (u, v) and the distances, and solving a 3x3 system of linear equations.
From the last equation, you can then estimate the distance for any point of the image.
The focal distance can be measured (in pixels) by looking at a target of known size, at a known distance. By proportionality, the ratio of the distance over the size is f over the length in the image.
Most vision libraries (including opencv) have built in functions that will take a couple points from a camera reference frame and the related points from a Cartesian plane and generate your warp matrix (affine transformation) for you. (some are fancy enough to include non-linearity mappings with enough input points, but that brings you back to your time to calibrate issue)
A final note: most vision libraries use some type of grid to calibrate off of ie a checkerboard patter. If you wrote your calibration to work off of such a sheet, then you would only need to measure distances to 1 target object as the transformations would be calculated by the sheet and the target would just provide the world offsets.
I believe what you are after is called a Projective Transformation. The link below should guide you through exactly what you need.
Demonstration of calculating a projective transformation with proper math typesetting on the Math SE.
Although you can solve this by hand and write that into your code... I strongly recommend using a matrix math library or even writing your own matrix math functions prior to resorting to hand calculating the equations as you will have to solve them symbolically to turn it into code and that will be very expansive and prone to miscalculation.
Here are just a few tips that may help you with clarification (applying it to your problem):
-Your A matrix (source) is built from the 4 xy points in your camera image (pixel locations).
-Your B matrix (destination) is built from your measurements in in the real world.
-For fast recalibration, I suggest marking points on the ground to be able to quickly place the cube at the 4 locations (and subsequently get the altered pixel locations in the camera) without having to remeasure.
-You will only have to do steps 1-5 (once) during calibration, after that whenever you want to know the position of something just get the coordinates in your image and run them through step 6 and step 7.
-You will want your calibration points to be as far away from eachother as possible (within reason, as at extreme distances in a vanishing point situation, you start rapidly losing pixel density and therefore source image accuracy). Make sure that no 3 points are colinear (simply put, make your 4 points approximately square at almost the full span of your camera fov in the real world)
ps I apologize for not writing this out here, but they have fancy math editing and it looks way cleaner!
Final steps to applying this method to this situation:
In order to perform this calibration, you will have to set a global home position (likely easiest to do this arbitrarily on the floor and measure your camera position relative to that point). From this position, you will need to measure your object's distance from this position in both x and y coordinates on the floor. Although a more tightly packed calibration set will give you more error, the easiest solution for this may simply be to have a dimension-ed sheet(I am thinking piece of printer paper or a large board or something). The reason that this will be easier is that it will have built in axes (ie the two sides will be orthogonal and you will just use the four corners of the object and used canned distances in your calibration). EX: for a piece of paper your points would be (0,0), (0,8.5), (11,8.5), (11,0)
So using those points and the pixels you get will create your transform matrix, but that still just gives you a global x,y position on axes that may be hard to measure on (they may be skew depending on how you measured/ calibrated). So you will need to calculate your camera offset:
object in real world coords (from steps above): x1, y1
camera coords (Xc, Yc)
dist = sqrt( pow(x1-Xc,2) + pow(y1-Yc,2) )
If it is too cumbersome to try to measure the position of the camera from global origin by hand, you can instead measure the distance to 2 different points and feed those values into the above equation to calculate your camera offset, which you will then store and use anytime you want to get final distance.
As already mentioned in the previous answers you'll need a projective transformation or simply a homography. However, I'll consider it from a more practical view and will try to summarize it short and simple.
So, given the proper homography you can warp your picture of a plane such that it looks like you took it from above (like here). Even simpler you can transform a pixel coordinate of your image to world coordinates of the plane (the same is done during the warping for each pixel).
A homography is basically a 3x3 matrix and you transform a coordinate by multiplying it with the matrix. You may now think, wait 3x3 matrix and 2D coordinates: You'll need to use homogeneous coordinates.
However, most frameworks and libraries will do this handling for you. What you need to do is finding (at least) four points (x/y-coordinates) on your world plane/floor (preferably the corners of a rectangle, aligned with your desired world coordinate system), take a picture of them, measure the pixel coordinates and pass both to the "find-homography-function" of your desired computer vision or math library.
In OpenCV that would be findHomography, here an example (the method perspectiveTransform then performs the actual transformation).
In Matlab you can use something from here. Make sure you are using a projective transformation as transform type. The result is a projective tform, which can be used in combination with this method, in order to transform your points from one coordinate system to another.
In order to transform into the other direction you just have to invert your homography and use the result instead.

How do I determine the camera rotation in world space (not orientation of a Charuco board) in OpenCV?

In OpenCV, I am using a Charuco board, have calibrated the camera, and use SolvePnP to get rvec and tvec. (similar to the sample code). I am using a stationary board, with a camera on a circular rig which orbits the board. I'm a noob with this, so please bear with me if this is something simple I am missing.
I understand that I can use Rodrigues() to get the 3x3 rotation matrix for the board orientation from rvec, and that I can transform the tvec value into world coordinates using -R.t() * tvec (in c++).
However, as I understand it, this 3x3 rotation R gives the orientation of the board with respect to the camera, so it's not quite what need. I want the rotation of the camera itself, which is offset from R by (I think) the angle between tvec and the z axis in camera space. (because the camera is not always pointing at the board origin, but it is always pointing down the z axis in camera space). Is this correct?
How do I find the additional rotation offset and convert it to a 3x3 rotation matrix which I can combine with R to get the actual camera orientation?
Thanks!
Let's say you capture N frames of the Charuco board from the camera. Then, you have N transformations taking a point in the camera frame to the same point in the Charuco board frame. This is obtained from the Charuco board poses for every frame.
Say we denote a linear transformation from one coordinate frame to another as T4x4 = [R3x3, t3x1; 01x3, 1] If we look at a point P from the board coordinate frame and refer to it as Pboard. Similarly, we look at that point from camera 1 referred to as c1, camera 2 as c2 and so on.
So, we could write:
Pboard = T1Pc1
Pboard = T2Pc2
.
.
.
Pboard = TNPcN
From what I understand, you need camera's rotation say from the starting point (assume that camera is at zero rotation in the frame 1). So, you could express every subsequent frame in terms of Pc1 instead of Pboard.
So, we could say
T2Pc2 = T1Pc1
or, Pc2 = T2-1T1Pc1
Similarly, PcN = TN-1T1Pc1
You could recover RN for taking point from camera position N to camera position 1 by looking at the rotation part of TN-1T1.

Extract face rotation from homography in a video

I'm trying to determine the orientation of a face in a video.
The video starts with the frontal image of the face, so it has no rotation. In the following frames the head rotates and i'm trying to determine the rotation, which will lead me to determine the face orientation based on the camera position.
I'm using OpenCV and C++ for the job.
I'm using SURF descriptors to find points on the face which i use to calculate an homography between the two images. Being the two frames very close to each other, the head rotation will be minimal in that interval and my homography matrix will be close to the identity matrix.
This is my homography matrix:
H = findHomography(k1,k2,RANSAC,8);
where k1 and k2 are the keypoints extracted with SURF.
I'm using decomposeProjectionMatrix to extract the rotation matrix but now i'm not sure how to interpret the rotMatrix. This one too is basically (1 0 0; 0 1 0; 0 0 1) (where the 0 are numbers in a range from e-10 to e-16).
In theory, what is was trying to do was to find the angle of the rotation at each frame and store it somewhere, so that if i get a 1° change in each frame, after 10 frames i know that my head has changed its orientation by 10°.
I spend some time reading everything i could find about QR decomposition, homography matrices and so on, but i haven't been able to get around this. Hence, any help would be really appreciated.
Thanks!
The upper-left 2x2 of the homography matrix is a 2D rotation matrix. If you work through the multiplication of the matrix with a point (i.e. take R*p), you'll see it's equivalent to:
newX = oldVector dot firstRow
newY = oldVector dot secondRow
In other words, the first row of the matrix is a unit vector which is the x axis of the new head. (If there's a scale difference between the frames it won't be a unit vector, but this method will still work.) So you should be able to calculate
rotation = atan2(second entry of first row, first entry of first row)

how can i measure distance of an detected object from camera in video using opencv?

All i know is that the height and width of an object in video. can someone guide me to calculate distance of an detected object from camera in video using c or c++? is there any algorithm or formula to do that?
thanks in advance
Martin Ch was correct in saying that you need to calibrate your camera, but as vasile pointed out, it is not a linear change. Calibrating your camera means finding this matrix
camera_matrix = [fx,0 ,cx,
0,fy,cy,
0,0, 1];
This matrix operates on a 3 dimensional coordinate (x,y,z) and converts it into a 2 dimensional homogeneous coordinate. To convert to your regular euclidean (x,y) coordinate just divide the first and second component by the third. So now what are those variables doing?
cx/cy: They exist to let you change coordinate systems if you like. For instance you might want the origin in camera space to be in the top left of the image and the origin in world space to be in the center. In that case
cx = -width/2;
cy = -height/2;
If you are not changing coordinate systems just leave these as 0.
fx/fy: These specify your focal length in units of x pixels and y pixels, these are very often close to the same value so you may be able to just give them the same value f. These parameters essentially define how strong perspective effects are. The mapping from a world coordinate to a screen coordinate (as you can work out for yourself from the above matrix) assuming no cx and cy is
xsc = fx*xworld/zworld;
ysc = fy*yworld/zworld;
As you can see the important quantity that makes things bigger closer up and smaller farther away is the ratio f/z. It is not linear, but by using homogenous coordinates we can still use linear transforms.
In short. With a calibrated camera, and a known object size in world coordinates you can calculate its distance from the camera. If you are missing either one of those it is impossible. Without knowing the object size in world coordinates the best you can do is map its screen position to a ray in world coordinates by determining the ration xworld/zworld (knowing fx).
i don´t think it is easy if have to use camera only,
consider about to use 3rd device/sensor like kinect/stereo camera,
then you will get the depth(z) from the data.
https://en.wikipedia.org/wiki/OpenNI

Resources