For reasons not really relevant to the question I want to use generics in my TRemotable classes. I've found that Soap.OPToSOAPDomConv.pas has some problems with this. It's using the old RTTI which I guess can't handle generics so the classes is not serialized into xml.
I've managed to change Soap.OPToSOAPDomConv.pas so that it works with generics. My main question is if it is considered ok to do changes in the Delphi source files?
If it isn't, is there a better way to do this? As long as it's just me using it I guess there is no big problems, but it's hard to distribute the source to others, and then there's also future changes in Delphi to consider.
The rest of this lenghty post is just details about what I'm actually doing :-)
I've changed this in Soap.OPToSOAPDomConv.pas (row 3759)
if SerializeProps then
begin
{ Serialized published properties }
Count := GetTypeData(Instance.ClassInfo)^.PropCount;
if Count > 0 then
begin
CheckedElemURI := False;
GetMem(PropList, Count * SizeOf(Pointer));
try
GetPropInfos(Instance.ClassInfo, PropList);
To: (not the prettiest implementation I guess)
New variables in the procedure:
Context: TRttiContext;
RttiProperty: TRttiProperty;
Row 3759:
if SerializeProps then
begin
{ Serialized published properties }
Count := 0;
for RttiProperty in Context.GetType(Instance.ClassInfo).GetProperties do
begin
if RttiProperty.Visibility = mvPublished then //The old method only read published
Count := Count + 1; //RTTI scoping [mvPublished] requires changes to
end; //soap.InvRegistry
begin
CheckedElemURI := False;
GetMem(PropList, Count * SizeOf(Pointer));
try
I := 0;
for RttiProperty in Context.GetType(Instance.ClassInfo).GetProperties do
if RttiProperty.Visibility = mvPublished then
begin
PropList[I] := TRttiInstanceProperty(RttiProperty).PropInfo;
I := I + 1;
end;
Some details as to what I am doing is probably helpful. The background is that the imported wsdl from the SOAP Web Service generates a huge unit, that consists of about 2000 classes and 300k rows of code. The web service design is out of my control. The WSDL Importer makes all of these classes visible in RTTI, which consumes the RTTI space and the unit won't compile.
I've refactored the code here and there and now have a working implementation. While refactoring I found that I could cut away some 50000 rows of redundant code by using generics. Since Delphi won't compile the imported wsdl "as is" anyway I will have to maintain the unit manually whenever new methods becomes available in the web service, so I want to make it as readable as possible.
Basically I'm changing according to below. The sample has very simplified classes, and the sample actually has more lines in the refactored code, but considering the original classes has a lot of procedures etc this method really makes the unit a lot more readable, and it's also easier to compose the classes.
TLCar = class(TRemotable)
private
FEngine: string;
FName: string;
published
property Name: string read FName write FName;
property Engine: string read FEngine write FEngine;
end;
TLBicycle = class(TRemotable)
private
FPedals: string;
FName: string;
published
property Name: string read FName write FName;
property Pedals: string read FPedals write FPedals;
end;
TListCarRequest = class(TRemotable)
private
FreturnedTags: TLCar;
published
property returnedTags: TLCar read FreturnedTags write FreturnedTags;
end;
TListBiCycleRequest = class(TRemotable)
private
FreturnedTags: TLBicycle;
published
property returnedTags: TLBicycle read FreturnedTags write FreturnedTags;
To:
TCommonReturnedTags = class(TRemotable)
private
FName: string;
published
property Name: string read FName write FName;
end;
TLCar = class(TCommonReturnedTags)
private
FEngine: string;
published
property Engine: string read FEngine write FEngine;
end;
TLBicycle = class(TCommonReturnedTags)
private
FPedals: string;
published
property Pedals: string read FPedals write FPedals;
end;
TGenericListRequest<T: TCommonReturnedTags, constructor> = class(TRemotable)
private
FreturnedTags: T;
published
property returnedTags: T read FreturnedTags write FreturnedTags;
end;
TListCarRequest = class(TGenericListRequest<TLCar>)
end;
TListBiCycleRequest = class(TGenericListRequest<TLBicycle>)
end;
Kind Regards,
Dan
There are two things to consider when making modifications such as this.
First of all, can the change have impact on existing functionality. As in this case I would say that it is safe because the functionality is new to this operation, so there shouldn't be any unexpected behavior.
Second part is the evolution development environment. Problem with the evolution of environment is that bindings between actions may change and that can lead to unexpected things. At this moment it is alright to assume that XE2 to has had it's share of updates. If it wouldn't, you would have to keep an eye when patching or updating. The second kind of change like the one from XE2 to XE3 can be handled better. Just put the following in top of Soap.OPToSOAPDomConv.pas:
{$IFNDEF VER230}
{$MESSAGE ERROR 'Intended to be used with XE2'}
{$ENDIF}
When get error while compiling you might remember vaguely that there was something about that file...
So in short, it is not bad things as far as try to evaluate impact and adapt to environment changes. Hopefully this was what you wanted to know.
Related
In the following type:
MyClass = class(TInterfacedPersistent)
private
FMyProperty: Integer;
published
procedure setMyProperty(Value: Integer); virtual;
property MyProperty: Integer read FMyProperty write setMyProperty;
I would like to know the name of the setter method of the "MyProperty" property via RTTI. I've tried the following:
procedure ShowSetterMethodsNames(pMyObject: TObject);
var
vPropList: TPropList;
vCount, I: Integer;
begin
vCount:= GetPropList(pMyObject.ClassInfo, tkProperties, #vPropList);
for I:= 0 to vCount -1 do
begin
if Assigned(vPropList[I]^.SetProc) then
ShowMessage(pMyObject.ClassType.MethodName(vPropList[I]^.SetProc));
end;
end;
Although the pointer is not nil, all I have is an empty message. Does anybody have some tip to me?
P.S.: I'm using Delphi XE4, and I know I should use extended RTTI instead of classic, but anyway, I can't do what I want in both features... So, any help will be appreciated. Thanks for the replies.
FINAL EDITION, problem solved:
Here is the code working, based in the (help of my friends and...) RTTI unit (DoSetValue method of TRTTIInstanceProperty class):
procedure ShowVirtualSettersNames(pObject: Pointer);
var
vSetter, vPointer: Pointer;
vPropList: TArray<TRttiProperty>;
vProp: TRttiProperty;
begin
vPropList:= RTTIUtils.ExtractProperties(TObject(pObject).ClassType); // Helper to get properties from a type, based in extended RTTI
for vProp in vPropList do
begin
vPointer:= TRttiInstanceProperty(vProp).PropInfo^.SetProc;
vPointer:= PPointer(PInteger(pObject)^ + Smallint(vPointer))^;
ShowMessage(TObject(pObject).ClassType.MethodName(vPointer));
end;
end;
This ONLY WORKS FOR VIRTUAL SETTERS, for statics the message is empty. Thanks everyone!
You can retrieve this method name, if
a) move the method to the published section (classic RTTI works with this section only (more accurately - compiled with {$M+} directive))
b) use right class specifier - MyClass.MethodName, because MethodName is class function
This code works on D7 and XE3:
MyClass = class(TInterfacedPersistent)
private
FMyProperty: Integer;
published
procedure setMyProperty(Value: Integer);
property MyProperty: Integer read FMyProperty write setMyProperty;
end;
procedure TForm1.Button1Click(Sender: TObject);
var
ppi: PPropInfo;
begin
ppi := GetPropInfo(MyClass, 'MyProperty');
ShowMessage(MyClass.MethodName(ppi.SetProc));
end;
P.S. What Delphi version are you using? What about Extended RTTI (since D2010)?
Read c:\rad studio\9.0\source\rtl\common\System.Rtti.pas
procedure TRttiInstanceProperty.DoSetValue
The setter of the property may be
a field (variable)
a static procedure
a virtual procedure (your case)
And those cases make PropInfo^.SetProc have different semantics of its value.
Direct address only applies to static procedures. For virtual methods you add a VMT offset and take the code address from that memory cell, as specified in that code i mentioned (but would not quote for copyright reasons).
Or you just could use TRttiProperty.SetValue and let Delphi do all those little under the hood details. See http://docwiki.embarcadero.com/Libraries/XE2/en/System.Rtti.TRttiProperty.SetValue
EDIT:
the code removed - it did not worked verbatim and the topic starter provided working version.
Regarding and I know I should use Extended RTTI instead of classic one - that is questionable claim. Extended RTTI is known to work noticeably slower than classic one. Dunno if someone did profiled it, but i suspect that is mostly due to the slow code of TValue. You can google and find that lot of people complained of slow TValue implementation and provided alternative ones with fixed efficiency. However since Extended RTTI only uses stock TValue it cannot benefit from those implementations and remains slower than classic one.
Please forgive the verbosity of the following code example. Using Delphi 2009, I created the two classes TOtherClass and TMyClass:
TOtherClass = class(TObject)
public
FData: string;
end;
TMyClass = class(TObject)
private
FIndxPropList: Array of TOtherClass;
function GetIndxProp(Index: Integer): TOtherClass;
procedure SetIndxProp(Index: Integer; Value: TOtherClass);
public
property IndxProp[Index: Integer]: TOtherClass read GetIndxProp write SetIndxProp;
end;
with access specifiers implemented as
function TMyClass.GetIndxProp(Index: Integer): TOtherClass;
begin
Result := self.FIndxPropList[Index];
end;
procedure TMyClass.SetIndxProp(Index: Integer; Value: TOtherClass);
begin
SetLength(self.FIndxPropList, Length(self.FIndxPropList) + 1);
self.FIndxPropList[Length(self.FIndxPropList) - 1] := Value;
end;
It's use can be illustrated as follows:
procedure Test();
var
MyClass: TMyClass;
begin
MyClass := TMyClass.Create;
MyClass.IndxProp[0] := TOtherClass.Create;
MyClass.IndxProp[0].FData := 'First instance.';
MyClass.IndxProp[1] := TOtherClass.Create;
MyClass.IndxProp[1].FData := 'Second instance.';
MessageDlg(MyClass.IndxProp[0].FData, mtInformation, [mbOk], 0);
MessageDlg(MyClass.IndxProp[1].FData, mtInformation, [mbOk], 0);
MyClass.IndxProp[0].Free;
MyClass.IndxProp[1].Free;
MyClass.Free;
end;
Never mind the obvious flaws of this "design". I realized that I'd like to be able to access the property IndxProp via RTTI, and subsequently moved the IndxProp to the published section. Much to my disappointment, I found that indexed properties are not allowed in the published section. As far as I understand (see Barry Kellys comment at How do I access Delphi Array Properties using RTTI), moving to D2010 won't enable me to do this.
On the other hand, the following is a quote from Robert Loves blog: "... properties and methods are now available via RTTI in both public and published sections, and Fields are available in all of the sections." (My italics.)
My question is this: if it's true that it is possible to get RTTI for public fields in D2010, shouldn't my original example (as shown above) work in D2010 (with RTTI)? Thanks in advance!
Yes, if all the property reader does is index into an array field or list-class field, then you can use RTTI to index into the field directly. This is kind of fragile, though, since it breaks your encapsulation, requiring you to write code to a specific implementation detail instead of a general principle, which is what RTTI is mainly good for. Your RTTI code has to match the exact structure of your class, and if it changes you have to change the code as well. That sort of defeats the purpose of using RTTI.
But, if there's no alternative available, since array properties have no RTTI for them, it may be the only way, for now at least.
EDIT: Updating this answer. Support for indexed properties was added to the extended RTTI system in XE2. (However, due to unrelated stability issues, you might want to wait for XE3...)
I application that uses strings for different status an item can be during its life.
ie
OPEN,
ACTIVE,
CLOSED,
DELETE,
and so on, at the moment they are all hard coded into code like so
MyVar := 'OPEN';
I am working on changing this as it can be a maintenance problem, so I want to change them all to a constants, I was going to do it like so
MyVar := STATUS_OPEN;
but I would like to group them together into one data structure like so
MyVar := TStatus.Open;
What is the best way to do this in delphi 2007?
I know I can make a record for this, but how do I populate it with the values, so that it is available to all objects in the system without then having to create a variable and populating the values each time?
Ideal I would like to have one central place for the data structure and values, and have them easily accessible (like TStatus.Open) without having to assign it to a variable or creating an object each time I use it.
I am sure there is a simple solution that i am just missing. any ideas?
As Jim mentioned you could use class constants or an enumerated type:
type
TItemStatus = (isOpen, isActive, isClosed);
const
ItemStatusStrings: array[TItemStatus] of string = ('Open', 'Active', 'Closed');
See http://edn.embarcadero.com/article/34324 ("New Delphi language features since Delphi 7".
A class constant would do nicely. From that link above:
type
TClassWithConstant = class
public
const SomeConst = 'This is a class constant';
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
ShowMessage(TClassWithConstant.SomeConst);
end;
I personally have used TOndrej's approach extensively in several large mission critical data processing platforms. The benefit of enumerations is that they can be easily passed around within an application, are very compact (an ordinal type), work perfectly in case statements and are completely type safe. The later point is important for maintenance since deleting or changing enumeration values will cause a compile error (a good think IMHO).
Some gotcha's to look out for with this approach:
Changing the declared order of enum values will foo bar the enum->string lookup array.
If you use the enum in case statements (a nice feature) be sure to take into account new values being added. I usually add an else to the case and throw an exception on unknown values. Much better than falling through the case.
If you are very concerned about the first gotcha, you can use a record in the lookup array and include the enum value in each record and validate the ordering from the unit initialization. This has saved my bacon many times in mission critical systems where maintenance is frequent. This approach can also be used to add additional meta data to each value (a very handy feature).
Best of luck!
unit Unit1;
interface
type
TItemStatusEnum = (isOpen, isActive, isClosed);
TItemStatusConst = class
class function EnumToString(EnumValue : TItemStatusEnum): string;
property OPEN: string index isOpen read EnumToString;
property CLOSED: string index isClosed read EnumToString;
property ACTIVE: string index isActive read EnumToString;
end;
var
ItemStatusConst : TItemStatusConst;
implementation
uses
SysUtils;
type
TItemStatusRec = record
Enum : TItemStatusEnum;
Value : string;
end;
const
ITEM_STATUS_LOOKUP : array[TItemStatusEnum] of TItemStatusRec =
((Enum: isOpen; Value: 'OPEN'),
(Enum: isActive; Value: 'ACTIVE'),
(Enum: isClosed; Value: 'CLOSED'));
procedure ValidateStatusLookupOrder;
var
Status : TItemStatusEnum;
begin
for Status := low(Status) to high(Status) do
if (ITEM_STATUS_LOOKUP[Status].Enum <> Status) then
raise Exception.Create('ITEM_STATUS_LOOKUP values out of order!');
end;
class function TItemStatusConst.EnumToString(EnumValue: TItemStatusEnum): string;
begin
Result := ITEM_STATUS_LOOKUP[EnumValue].Value;
end;
initialization
ValidateStatusLookupOrder;
end.
Update:
Thanks for the critique - you are absolutely correct in that I was solving what I perceived as the problem underlying the question. Below is a much simpler approach if you can live with the constraint that this must ONLY work in Delphi 2007 or later versions (might work in D2006?). Hard to shed those nagging thoughts of backward compatibility ;)
type
ItemStatusConst = record
const OPEN = 'OPEN';
const ACTIVE = 'ACTIVE';
const CLOSED = 'CLOSED';
end;
This approach is simple and has a similar feel to what one might do in a Java or .Net application. Usage semantics are as expected and will work with code completion. A big plus is that the constants are scoped at a record level so there is no risk of clashes with other definitions as happens with unit scoped types.
Sample usage:
ShowMessage(ItemStatusConst.ACTIVE);
ShowMessage(ItemStatusConst.CLOSED);
Just for fun, I have also revised my earlier approach to directly address the original question with a similar outcome. This time I made use of "simulated class properties" (see here) with a property indexer. This is clearly more complex than the record approach, but retains the ability to work with enum values, sets, strings AND can also be extended to implement additional meta data features where required. I believe this works for Delphi versions going as far back as Delphi 5 IIRC.
An example of where I used this technique to great effect was a parsing framework I created in Delphi to handle the full IBM AFPDS print data stream grammar. This flexibility is why I love working in Delphi - it is like a Swiss army knife ;)
Or you could combine #Jim and #TOndrej
TGlobalConsts = class
type
TItemStatus = (isOpen, isActive, isClosed);
const
ItemStatusStrings: array[TItemStatus] of string = ('Open', 'Active', 'Closed');
end;
Although you could make it a class or a record really. Although if it is a class you can add the class functions like #mghie suggested, and instead just get the values from the const array. Personally I prefer having all the strings in a const array in the interface instead of peppered in the function bodies in the implementation.
class function TGlobalConsts.Active: string;
begin
Result := ItemStatusStrings[itsActive];
end;
class function TGlobalConsts.Open: string;
begin
Result := ItemStatusStrings[itsOpen];
end;
There are a lot of ways to do it, that is for sure.
This is something that you can do in all versions of Delphi:
type
TStatus = class
class function Active: string;
class function Open: string;
...
end;
class function TStatus.Active: string;
begin
Result := 'ACTIVE';
end;
class function TStatus.Open: string;
begin
Result := 'OPEN';
end;
You can use this exactly as you want:
MyVar := TStatus.Open;
there is exactly one place to change the strings, and there is only code involved, no runtime instantiation. New features of recent Delphi versions aren't always necessary to do stuff like that...
In addition to what TOndrej said:
One can also declare a record constant:
type
TRecordName = record
Field1: Integer;
Field2: String
end;
const
itemstatus : TRecordName = (
Field1: 0;
Field2: 'valueoffield2'
);
An array of records is also possible, by combining the const record syntax above and the array syntax shown by TOndrej.
However, the way I usually prefer needs initialization:
populating a TStringDynArray with the names of an enum via RTTI
If it then turns out that the names should be configurable, the persistance (however it is arranged) can simply load/store the dynarray.
You could have a global variable of a record type. The record type must have a field for each status you have.
You can populate the record in the Initialize section of any unit, calling a procedure or function declared in that unit. You could have a single unit to specifically do this work, something like StatusTypes.pas.
In the interface section you could declare something like:
type
TStatus = record
OPEN: string;
end;
var
Status: TStatus;
Delphi (and probably a lot of other languages) has class helpers. These provide a way to add extra methods to an existing class. Without making a subclass.
So, what are good uses for class helpers?
I'm using them:
To insert enumerators into VCL classes that don't implement them.
To enhance VCL classes.
To add methods to the TStrings class so I can use the same methods in my derived lists and in TStringList.
TGpStringListHelper = class helper for TStringList
public
function Last: string;
function Contains(const s: string): boolean;
function FetchObject(const s: string): TObject;
procedure Sort;
procedure Remove(const s: string);
end; { TGpStringListHelper }
To simplify access to record fields and remove casting.
At first I was kind of sceptic about class helpers. But then I read an interesting blog entry and now I'm convinced that they are indeed useful.
For example, if you want extra functionality for an existing instance class and for some reason you are not able to change the existing source. You can create a class helper to add this functionality.
Example:
type
TStringsHelper = class helper for TStrings
public
function IsEmpty: Boolean;
end;
function TStringsHelper.IsEmpty: Boolean;
begin
Result := Count = 0;
end;
Every time, we now use an instance of (a subclass of) TStrings, and TStringsHelper is within the scope. We have access to the method IsEmpty.
Example:
procedure TForm1.Button1Click(Sender: TObject);
begin
if Memo1.Lines.IsEmpty then
Button1.Caption := 'Empty'
else
Button1.Caption := 'Filled';
end;
Notes:
Class helpers can be stored in a separate unit, so you can add your own nifty class helpers. Be sure to give these units a easy to remember name like ClassesHelpers for helpers for the Classes unit.
There are also record helpers.
If there are multiple class helpers within scope, expect some problems, only one helper can be used.
This sounds very much like extension methods in C#3 (and VB9). The best use I've seen for them is the extensions to IEnumerable<T> (and IQueryable<T>) which lets LINQ work against arbitrary sequences:
var query = someOriginalSequence.Where(person => person.Age > 18)
.OrderBy(person => person.Name)
.Select(person => person.Job);
(or whatever, of course). All of this is doable because extension methods allow you to effectively chain together calls to static methods which take the same type as they return.
They're very useful for plug-ins. For example, let's say your project defines a certain data structure and it's saved to disc in a certain way. But then some other program does something very similar, but the data file's different. But you don't want to bloat your EXE with a bunch of import code for a feature that a lot of your users won't need to use. You can use a plugin framework and put importers into a plugin that would work like this:
type
TCompetitionToMyClass = class helper for TMyClass
public
constructor Convert(base: TCompetition);
end;
And then define the converter. One caveat: a class helper is not a class friend. This technique will only work if it's possible to completely setup a new TMyClass object through its public methods and properties. But if you can, it works really well.
I would not recommend to use them, since I read this comment:
"The biggest problem with class
helpers, from the p.o.v of using them
in your own applications, is the fact
that only ONE class helper for a given
class may be in scope at any time."
... "That is, if you have two helpers
in scope, only ONE will be recognised
by the compiler. You won't get any
warnings or even hints about any other
helpers that may be hidden."
http://davidglassborow.blogspot.com/2006/05/class-helpers-good-or-bad.html
The first time I remember experiencing what you're calling "class helpers" was while learning Objective C. Cocoa (Apple's Objective C framework) uses what are called "Categories."
A category allows you to extend an existing class by adding you own methods without subclassing. In fact Cocoa encourages you to avoid subclassing when possible. Often it makes sense to subclass, but often it can be avoided using categories.
A good example of the use of a category in Cocoa is what's called "Key Value Code (KVC)" and "Key Value Observing (KVO)."
This system is implemented using two categories (NSKeyValueCoding and NSKeyValueObserving). These categories define and implement methods that can be added to any class you want. For example Cocoa adds "conformance" to KVC/KVO by using these categories to add methods to NSArray such as:
- (id)valueForKey:(NSString *)key
NSArray class does not have either a declaration nor an implementation of this method. However, through use of the category. You can call that method on any NSArray class. You are not required to subclass NSArray to gain KVC/KVO conformance.
NSArray *myArray = [NSArray array]; // Make a new empty array
id myValue = [myArray valueForKey:#"name"]; // Call a method defined in the category
Using this technique makes it easy to add KVC/KVO support to your own classes. Java interfaces allow you to add method declarations, but categories allow you to also add the actual implementations to existing classes.
As GameCat shows, TStrings is a good candidate to avoid some typing:
type
TMyObject = class
public
procedure DoSomething;
end;
TMyObjectStringsHelper = class helper for TStrings
private
function GetMyObject(const Name: string): TMyObject;
procedure SetMyObject(const Name: string; const Value: TMyObject);
public
property MyObject[const Name: string]: TMyObject read GetMyObject write SetMyObject; default;
end;
function TMyObjectStringsHelper.GetMyObject(const Name: string): TMyObject;
var
idx: Integer;
begin
idx := IndexOf(Name);
if idx < 0 then
result := nil
else
result := Objects[idx] as TMyObject;
end;
procedure TMyObjectStringsHelper.SetMyObject(const Name: string; const Value:
TMyObject);
var
idx: Integer;
begin
idx := IndexOf(Name);
if idx < 0 then
AddObject(Name, Value)
else
Objects[idx] := Value;
end;
var
lst: TStrings;
begin
...
lst['MyName'] := TMyObject.Create;
...
lst['MyName'].DoSomething;
...
end;
Did you ever need to access multi line strings in the registry?
type
TRegistryHelper = class helper for TRegistry
public
function ReadStrings(const ValueName: string): TStringDynArray;
end;
function TRegistryHelper.ReadStrings(const ValueName: string): TStringDynArray;
var
DataType: DWord;
DataSize: DWord;
Buf: PChar;
P: PChar;
Len: Integer;
I: Integer;
begin
result := nil;
if RegQueryValueEx(CurrentKey, PChar(ValueName), nil, #DataType, nil, #DataSize) = ERROR_SUCCESS then begin
if DataType = REG_MULTI_SZ then begin
GetMem(Buf, DataSize + 2);
try
if RegQueryValueEx(CurrentKey, PChar(ValueName), nil, #DataType, PByte(Buf), #DataSize) = ERROR_SUCCESS then begin
for I := 0 to 1 do begin
if Buf[DataSize - 2] <> #0 then begin
Buf[DataSize] := #0;
Inc(DataSize);
end;
end;
Len := 0;
for I := 0 to DataSize - 1 do
if Buf[I] = #0 then
Inc(Len);
Dec(Len);
if Len > 0 then begin
SetLength(result, Len);
P := Buf;
for I := 0 to Len - 1 do begin
result[I] := StrPas(P);
Inc(P, Length(P) + 1);
end;
end;
end;
finally
FreeMem(Buf, DataSize);
end;
end;
end;
end;
I've seen them used for making available class methods consistent across classes: Adding Open/Close and Show/Hide to all classes of a given "type" rather than only Active and Visible properties.
If Dephi supported extension methods, one use i want is:
TGuidHelper = class
public
class function IsEmpty(this Value: TGUID): Boolean;
end;
class function TGuidHelper(this Value: TGUID): Boolean;
begin
Result := (Value = TGuid.Empty);
end;
So i can call if customerGuid.IsEmpty then ....
Another good example is to be able to read values from an XML document (or JSON if you're into that sort of thing) with the IDataRecord paradigm (which i love):
orderGuid := xmlDocument.GetGuid('/Order/OrderID');
Which is much better than:
var
node: IXMLDOMNode;
node := xmlDocument.selectSingleNode('/Order/OrderID');
if Assigned(node) then
orderID := StrToGuid(node.Text) //throw convert error on empty or invalid
else
orderID := TGuid.Empty; // "DBNull" becomes the null guid
Other languages have properly designed class helpers.
Delphi has class helpers that were introduced solely to help the Borland engineers with a compatibility problem between Delphi and Delphi.net.
They were never intended to be used in "user" code and have not been improved since. They can be helpful if developing frameworks (for private use within the framework, as with the original .NET compatibility solution); it is dangerously misguided to equate Delphi class helpers with those in other languages or to draw on examples from those other languages in an effort to identify use cases for those in Delphi.
To this day, the current Delphi documentation has this to say about class and record helpers:
they should not be viewed as a design tool to be used when developing new code
ref: https://docwiki.embarcadero.com/RADStudio/Alexandria/en/Class_and_Record_Helpers_(Delphi)
So the answer to the question "what are the good uses for class helpers" in Delphi specifically is quite simple:
There is only one safe use: For context-specific extensions of utility and interest only in the single codebase that implements and consumes the helper (detailed example here: https://www.deltics.co.nz/blog/posts/683).
The example is a framework for restful API where extensions to a class of interest only to client-side code are provided by "Client Helper" extensions, explicitly imported from client-specific units rather than (over)loading client-concerns into an original class with both server and client context.
Other than that: Do not use them at all (either implementing your own or consuming those provided by others) unless you are prepared to deal with the consequences:
Primarily: Only one helper can be in scope at any time
Secondarily: There is no way to qualify helper referenced
Because of the primary problem:
Adding a unit to (or even just changing the order of) the units in a uses clause may inadvertently "hide" a helper needed in your code (you may not even know where from)
A helper added to a unit already in your uses list could hide some other helper previously "imported" and used from another
And thanks to the secondary problem, if you are unable to re-order the uses list to make a desired helper "visible" or you need 2 unrelated helpers (unaware of each other and so unable to "extent" one another), then there is no way to use it!
Worth emphasising here is that the ability of Delphi class helpers to break other people's code is an almost uniquely bad characteristic. Many language features in many languages can be abused to break your own code; not many enable you to break someone else's!
More details in various posts here: https://www.deltics.co.nz/blog/?s=class+helpers
Particularly this one: https://www.deltics.co.nz/blog/posts/273/
I'm trying to parse objects to XML in Delphi, so I read about calling the object's ClassInfo method to get its RTTI info.
The thing is, this apparently only works for TPersistent objects. Otherwise, I have to specifically add a compiler directive {$M+} to the source code for the compiler to generate RTTI info.
So I happily added the directive, only to find that, even if it did return something from the ClassInfo call (it used to return nil), now I cannot retrieve the class' properties, fields or methods from it. It's like it created the object empty.
Any idea what am I missing here? Thanks!
Did you put those properties and methods into the published section?
Besides that, 'classical' RTTI ($TYPEINFO ON) will only get you information on properties, not on methods. You need 'extended' RTTI ($METHODINFO ON) for those.
Good starting point for extended RTTI: David Glassborow on extended RTTI
(who would believe that just this minute I finished writing some code that uses extended RTTI and decided to browse the Stack Overflow a little:))
RTTI will only show you published properties,etc. - not just public ones.
Try your code with a TObject and see what happens - if that isn't working, post your code because not everyone is psychic.
Have you considered using the TXMLDocument component? It will look at your XML and then create a nice unit of Delphi classes that represents your XML file -- makes it really, really easy to read and write XML files.
As for the RttiType problem returning only nil, this probably occurs for one reason: in your test, you did not instantiate the class at any time. The compiler, because it never has a reference to this class (because it is not an instance at all), simply removes it from the information as a form of optimization. See the two examples below. The behavior is different when you have the class instantiated at some point in your code or not.
Suppose the following class:
type
TTest = class
public
procedure Test;
end;
and the following code below:
var
LContext: TRttiContext;
LType: TRttiType;
LTest: TTest;
begin
LContext := TRttiContext.Create;
for LType in LContext.GetTypes do
begin
if LType.IsInstance then
begin
WriteLn(LType.Name);
end;
end;
end;
so far, TTest class information is not available for use by RTTI. However, when we create at some point, within the application, then a reference is created for it within the compile, which makes this information available:
var
LContext: TRttiContext;
LType: TRttiType;
LTest: TTest;
begin
LTest := TTest.Create; //Here i´m using TTest.
//Could be in another part of the program
LContext := TRttiContext.Create;
for LType in LContext.GetTypes do
begin
if LType.IsInstance then
begin
WriteLn(LType.Name);
end;
end;
end;
At that point, if you use LContext.FindType ('TTest'), there will not be a nil return, because the compiler kept reference to the class. This explains the behavior you were having in your tests.