we have proved in class that if A* in Tree-Search is optimal, then h(n) is admissible(Admissible Heuristics). If using A* in Graph-Search finds the optimal solution, then h(n) is consistent. We proved the properties of admissible and consistent if we assume that A* can find the optimal solution. This indicates that consistent /admissible are necessary conditions for optimality in Graph/Tree Searching.
However, I am not too sure how to prove that they are also both sufficient conditions as well. I tried to figure it out, but I still could not find a good way to prove it. For example, I am not too sure how to prove that being admissible can lead to optimality in Tree-Searching using A*? And similarly, how to prove that being consistent can lead to optimality in Graph-Searching using A*? Thank you in advance!
This is my first time asking on StackOverflow, sorry if I am not phrasing my question well. : )Thank you in advance!
This indicates that consistent /admissible are necessary conditions for optimality in Graph/Tree Searching.
No, it implies they're sufficient conditions. In fact, the converse is not true - it is possible to find cases where a given non-admissible heuristic returns the optimal result for a specific graph (simple counter-example: a tree with only one path will return the optimal path for any heuristic). Thus they are not necessary conditions.
As a side note, 'consistent' implies 'admissible', and trees are a type of graph, so it is enough to prove the "admissible + graph" case, and all four cases (admissible/consistent, tree/graph) are immediately implied.
I am trying to find an optimal solution using the Z3 API for python. I have used set_option("verbose", 1) to print statements that Z3 generates while checking for sat. One of the statements it prints is pb.conflict statements. The statements look something like this -
pb.conflict statements.
I want to know what exactly is pb.conflict. What do these statements signify? Also, what are the two numbers that get printed along with it?
pb stands for Pseudo-boolean. A pseudo-boolean function is a function from booleans to some other domain, usually Real. A conflict happens when the choice of a variable leads to an unsatisfiable clause set, at which point the solver has to backtrack. Keeping the backtracking to a minimum is essential for efficiency, and many of the SAT engines carefully track that number. While the details are entirely solver specific (i.e., those two numbers you're asking about), in general the higher the numbers, the more conflict cases the solver met, and hence might decide to reset the state completely or take some other action. Often, there are parameters that users can set to specify when such actions are taken and exactly what those are. But again, this is entirely solver and implementation specific.
A google search on pseudo-boolean optimization will result in a bunch of scholarly articles that you might want to peruse.
If you really want to find Z3's treatment of pseudo-booleans, then your best bet is probably to look at the implementation itself: https://github.com/Z3Prover/z3/blob/master/src/smt/theory_pb.cpp
I need to know the time complexity of the
sortedArrayUsingComparator function of the NSArray class. A source would be great since I'm likely to mention it in my bachelor's thesis.
I'm sorting an array of locations by distance to the current location.
The only answer I could find was someone saying it was at least T(n)=O(n) but likely T(n)=O(n log n)
How would I know for sure?
By actual trial of NSArray sorting the times are in line with O(n*log(n)).
See blog post
Note that in a comment there is a sort method (PS9110) which is O(n) but is proprietary and patented. The method is quite interesting.
Well to sort an array you have to at least look at every element which is for sure O(n). There are several mathematical papers which show you that there can't be a better sorting algorithm then O(n*log(n)) like Mergesort for example. Since the comparator implements a Mergesort I think the complexity should be O(n*log(n)) for best,average and worst case.
You can find some information about Mergesort here:
Mergesort
And some article concerning the best sorting algorithm time complexity:
Sorting algorithms
I couldn't find the exact implementation of the given method but here is a great article how you can dig deeper in the implementation of Arrays in Objective-C and to have a look at the methods implementation:
Exposing NSMutableArray
I'm learning F# (new to functional programming in general though used functional aspects of C# for years but let's face it, that's pretty different) and one of the things that I've read is that the F# compiler identifies tail recursion and compiles it into a while loop (see http://thevalerios.net/matt/2009/01/recursion-in-f-and-the-tail-recursion-police/).
What I don't understand is why you would write a recursive function instead of a while loop if that's what it's going to turn into anyway. Especially considering that you need to do some extra work to make your function recursive.
I have a feeling someone might say that the while loop is not particularly functional and you want to act all functional and whatnot so you use recursion but then why is it sufficient for the compiler to turn it into a while loop?
Can someone explain this to me?
You could use the same argument for any transformation that the compiler performs. For instance, when you're using C#, do you ever use lambda expressions or anonymous delegates? If the compiler is just going to turn those into classes and (non-anonymous) delegates, then why not just use those constructions yourself? Likewise, do you ever use iterator blocks? If the compiler is just going to turn those into state machines which explicitly implement IEnumerable<T>, then why not just write that code yourself? Or if the C# compiler is just going to emit IL anyway, why bother writing C# instead of IL in the first place? And so on.
One obvious answer to all of these questions is that we want to write code which allows us to express ourselves clearly. Likewise, there are many algorithms which are naturally recursive, and so writing recursive functions will often lead to a clear expression of those algorithms. In particular, it is arguably easier to reason about the termination of a recursive algorithm than a while loop in many cases (e.g. is there a clear base case, and does each recursive call make the problem "smaller"?).
However, since we're writing code and not mathematics papers, it's also nice to have software which meets certain real-world performance criteria (such as the ability to handle large inputs without overflowing the stack). Therefore, the fact that tail recursion is converted into the equivalent of while loops is critical for being able to use recursive formulations of algorithms.
A recursive function is often the most natural way to work with certain data structures (such as trees and F# lists). If the compiler wants to transform my natural, intuitive code into an awkward while loop for performance reasons that's fine, but why would I want to write that myself?
Also, Brian's answer to a related question is relevant here. Higher-order functions can often replace both loops and recursive functions in your code.
The fact that F# performs tail optimization is just an implementation detail that allows you to use tail recursion with the same efficiency (and no fear of a stack overflow) as a while loop. But it is just that - an implementation detail - on the surface your algorithm is still recursive and is structured that way, which for many algorithms is the most logical, functional way to represent it.
The same applies to some of the list handling internals as well in F# - internally mutation is used for a more efficient implementation of list manipulation, but this fact is hidden from the programmer.
What it comes down to is how the language allows you to describe and implement your algorithm, not what mechanics are used under the hood to make it happen.
A while loop is imperative by its nature. Most of the time, when using while loops, you will find yourself writing code like this:
let mutable x = ...
...
while someCond do
...
x <- ...
This pattern is common in imperative languages like C, C++ or C#, but not so common in functional languages.
As the other posters have said some data structures, more exactly recursive data structures, lend themselves to recursive processing. Since the most common data structure in functional languages is by far the singly linked list, solving problems by using lists and recursive functions is a common practice.
Another argument in favor of recursive solutions is the tight relation between recursion and induction. Using a recursive solution allows the programmer to think about the problem inductively, which arguably helps in solving it.
Again, as other posters said, the fact that the compiler optimizes tail-recursive functions (obviously, not all functions can benefit from tail-call optimization) is an implementation detail which lets your recursive algorithm run in constant space.
I know that in some languages (Haskell?) the striving is to achieve point-free style, or to never explicitly refer to function arguments by name. This is a very difficult concept for me to master, but it might help me to understand what the advantages (or maybe even disadvantages) of that style are. Can anyone explain?
The point-free style is considered by some author as the ultimate functional programming style. To put things simply, a function of type t1 -> t2 describes a transformation from one element of type t1 into another element of type t2. The idea is that "pointful" functions (written using variables) emphasize elements (when you write \x -> ... x ..., you're describing what's happening to the element x), while "point-free" functions (expressed without using variables) emphasize the transformation itself, as a composition of simpler transforms. Advocates of the point-free style argue that transformations should indeed be the central concept, and that the pointful notation, while easy to use, distracts us from this noble ideal.
Point-free functional programming has been available for a very long time. It was already known by logicians which have studied combinatory logic since the seminal work by Moses Schönfinkel in 1924, and has been the basis for the first study on what would become ML type inference by Robert Feys and Haskell Curry in the 1950s.
The idea to build functions from an expressive set of basic combinators is very appealing and has been applied in various domains, such as the array-manipulation languages derived from APL, or the parser combinator libraries such as Haskell's Parsec. A notable advocate of point-free programming is John Backus. In his 1978 speech "Can Programming Be Liberated From the Von Neumann Style ?", he wrote:
The lambda expression (with its substitution rules) is capable of
defining all possible computable functions of all possible types
and of any number of arguments. This freedom and power has its
disadvantages as well as its obvious advantages. It is analogous
to the power of unrestricted control statements in conventional
languages: with unrestricted freedom comes chaos. If one
constantly invents new combining forms to suit the occasion, as
one can in the lambda calculus, one will not become familiar with
the style or useful properties of the few combining forms that
are adequate for all purposes. Just as structured programming
eschews many control statements to obtain programs with simpler
structure, better properties, and uniform methods for
understanding their behavior, so functional programming eschews
the lambda expression, substitution, and multiple function
types. It thereby achieves programs built with familiar
functional forms with known useful properties. These programs are
so structured that their behavior can often be understood and
proven by mechanical use of algebraic techniques similar to those
used in solving high school algebra problems.
So here they are. The main advantage of point-free programming are that they force a structured combinator style which makes equational reasoning natural. Equational reasoning has been particularly advertised by the proponents of the "Squiggol" movement (see [1] [2]), and indeed use a fair share of point-free combinators and computation/rewriting/reasoning rules.
[1] "An introduction to the Bird-Merteens Formalism", Jeremy Gibbons, 1994
[2] "Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire", Erik Meijer, Maarten Fokkinga and Ross Paterson, 1991
Finally, one cause for the popularity of point-free programming among Haskellites is its relation to category theory. In category theory, morphisms (which could be seen as "transformations between objects") are the basic object of study and computation. While partial results allow reasoning in specific categories to be performed in a pointful style, the common way to build, examine and manipulate arrows is still the point-free style, and other syntaxes such as string diagrams also exhibit this "pointfreeness". There are rather tight links between the people advocating "algebra of programming" methods and users of categories in programming (for example the authors of the banana paper [2] are/were hardcore categorists).
You may be interested in the Pointfree page of the Haskell wiki.
The downside of pointfree style is rather obvious: it can be a real pain to read. The reason why we still love to use variables, despite the numerous horrors of shadowing, alpha-equivalence etc., is that it's a notation that's just so natural to read and think about. The general idea is that a complex function (in a referentially transparent language) is like a complex plumbing system: the inputs are the parameters, they get into some pipes, are applied to inner functions, duplicated (\x -> (x,x)) or forgotten (\x -> (), pipe leading nowhere), etc. And the variable notation is nicely implicit about all that machinery: you give a name to the input, and names on the outputs (or auxiliary computations), but you don't have to describe all the plumbing plan, where the small pipes will go not to be a hindrance for the bigger ones, etc. The amount of plumbing inside something as short as \(f,x,y) -> ((x,y), f x y) is amazing. You may follow each variable individually, or read each intermediate plumbing node, but you never have to see the whole machinery together. When you use a point-free style, all the plumbing is explicit, you have to write everything down, and look at it afterwards, and sometimes it's just plain ugly.
PS: this plumbing vision is closely related to the stack programming languages, which are probably the least pointful programming languages (barely) in use. I would recommend trying to do some programming in them just to get of feeling of it (as I would recommend logic programming). See Factor, Cat or the venerable Forth.
I believe the purpose is to be succinct and to express pipelined computations as a composition of functions rather than thinking of threading arguments through. Simple example (in F#) - given:
let sum = List.sum
let sqr = List.map (fun x -> x * x)
Used like:
> sum [3;4;5]
12
> sqr [3;4;5]
[9;16;25]
We could express a "sum of squares" function as:
let sumsqr x = sum (sqr x)
And use like:
> sumsqr [3;4;5]
50
Or we could define it by piping x through:
let sumsqr x = x |> sqr |> sum
Written this way, it's obvious that x is being passed in only to be "threaded" through a sequence of functions. Direct composition looks much nicer:
let sumsqr = sqr >> sum
This is more concise and it's a different way of thinking of what we're doing; composing functions rather than imagining the process of arguments flowing through. We're not describing how sumsqr works. We're describing what it is.
PS: An interesting way to get your head around composition is to try programming in a concatenative language such as Forth, Joy, Factor, etc. These can be thought of as being nothing but composition (Forth : sumsqr sqr sum ;) in which the space between words is the composition operator.
PPS: Perhaps others could comment on the performance differences. It seems to me that composition may reduce GC pressure by making it more obvious to the compiler that there is no need to produce intermediate values as in pipelining; helping make the so-called "deforestation" problem more tractable.
While I'm attracted to the point-free concept and used it for some things, and agree with all the positives said before, I found these things with it as negative (some are detailed above):
The shorter notation reduces redundancy; in a heavily structured composition (ramda.js style, or point-free in Haskell, or whatever concatenative language) the code reading is more complex than linearly scanning through a bunch of const bindings and using a symbol highlighter to see which binding goes into what other downstream calculation. Besides the tree vs linear structure, the loss of descriptive symbol names makes the function hard to intuitively grasp. Of course both the tree structure and the loss of named bindings also have a lot of positives as well, for example, functions will feel more general - not bound to some application domain via the chosen symbol names - and the tree structure is semantically present even if bindings are laid out, and can be comprehended sequentially (lisp let/let* style).
Point-free is simplest when just piping through or composing a series of functions, as this also results in a linear structure that we humans find easy to follow. However, threading some interim calculation through multiple recipients is tedious. There are all kinds of wrapping into tuples, lensing and other painstaking mechanisms go into just making some calculation accessible, that would otherwise be just the multiple use of some value binding. Of course the repeated part can be extracted out as a separate function and maybe it's a good idea anyway, but there are also arguments for some non-short functions and even if it's extracted, its arguments will have to be somehow threaded through both applications, and then there may be a need for memoizing the function to not actually repeat the calculation. One will use a lot of converge, lens, memoize, useWidth etc.
JavaScript specific: harder to casually debug. With a linear flow of let bindings, it's easy to add a breakpoint wherever. With the point-free style, even if a breakpoint is somehow added, the value flow is hard to read, eg. you can't just query or hover over some variable in the dev console. Also, as point-free is not native in JS, library functions of ramda.js or similar will obscure the stack quite a bit, especially with the obligate currying.
Code brittleness, especially on nontrivial size systems and in production. If a new piece of requirement comes in, then the above disadvantages get into play (eg. harder to read the code for the next maintainer who may be yourself a few weeks down the line, and also harder to trace the dataflow for inspection). But most importantly, even something seemingly small and innocent new requirement can necessitate a whole different structuring of the code. It may be argued that it's a good thing in that it'll be a crystal clear representation of the new thing, but rewriting large swaths of point-free code is very time consuming and then we haven't mentioned testing. So it feels that the looser, less structured, lexical assignment based coding can be more quickly repurposed. Especially if the coding is exploratory, and in the domain of human data with weird conventions (time etc.) that can rarely be captured 100% accurately and there may always be an upcoming request for handling something more accurately or more to the needs of the customer, whichever method leads to faster pivoting matters a lot.
To the pointfree variant, the concatenative programming language, i have to write:
I had a little experience with Joy. Joy is a very simple and beautiful concept with lists. When converting a problem into a Joy function, you have to split your brain into a part for the stack plumbing work and a part for the solution in the Joy syntax. The stack is always handled from the back. Since the composition is contained in Joy, there is no computing time for a composition combiner.