Face Expression Change - opencv

I have seen numerous examples and sample code for detecting emotions from a human face. I am in desperate need of some algorithm to change expressions. I am a new OpenCV learner. I am also confused if this image manipulation can be done using opencv ? Can functions such as warpaffine() be used for this ? If shall be grateful if someone can guide me in steps how to perform this eg. input a neutral face emotion and convert it to smile ?

Try using FaceAPI, it is free to use for non-commercial purposes and works brilliantly. It is well documented and easy to use.

Related

how to apply genetic algorithm on 2d or multidimesional images for optimisation

I am trying to Code a genetic algorithm in Matlab but really dont know how it works in images and how to proceed? Is there any basic tutorial that can help me understand how to apply GA on images (starting from 2d to multidimentional images ).
That will be a great help for me.
Thanking everyone in anticipations.
Kind Regards.
For GA you need two things: a fitness function that can evaluate any solution and tell how good it is, and a representation of your solution so that you can do crossover and mutation. Once you have these, you are good to go. I'm not an expert on image processing so I can't help you with that exactly.
Look at the book Essentials of metaheuristics which is a very good resource for start with evolutionary computation (and not only that) in general. It's free.
There is a paper on this subject which you can find at the IEEE library. I believe it solves the problem you vaguely describe.

How to use Opencv for Document Recognition with OCR?

I´m a beginner on computer vision, but I know how to use some functions on opencv. I´m tryng to use Opencv for Document Recognition, I want a help to find the steps for it.
I´m thinking to use opencv example find_obj.cpp , but the documents, for example passport, has some variables, name, birthdate, pictures. So, I need a help to define the steps for it, and if is possible how function I have to use on the steps.
I'm not asking a whole code, but if anyone has any example link or you can just type a walkthrough, it is of great help.
There are two very different steps involved here. One is detecting your object, and the other is analyzing it.
For object detection, you're just trying to figure out whether the object is in the frame, and approximately where it's located. The OpenCv features framework is great for this. For some tutorials and comprehensive sample code, see the OpenCv features2d tutorials and especially the feature matching tutorial.
For analysis, you need to dig into optical character recognition (OCR). OpenCv does not include OCR libraries, but I recommend checking out tesseract-ocr, which is a great OCR library. If your documents have a fixed structured (consistent layout of text fields) then tesseract-ocr is all you need. For more advanced analysis checking out ocropus, which uses tesseract-ocr but adds layout analysis.

Face Recognition in OpenCV

I was trying to build a basic Face Recognition system (PCA-Eigenfaces) using OpenCV 2.2 (from Willow Garage). I understand from many of the previous posts on Face Recognition that there is no standard open source library that can provide all the face recognition for you.
Instead, I would like to know if someone has used the functions(and integrated them):
icvCalcCovarMatrixEx_8u32fR
icvCalcEigenObjects_8u32fR
icvEigenProjection_8u32fR
et.al in the eigenobjects.cpp to form a face recognition system, because the functions seem to provide much of the required functionality along with cvSvd?
I am having a tough time trying to understand to do so since I am new to OpenCV.
Update: OpenCV 2.4.2 now comes with the very new cv::FaceRecognizer. Please see the very detailed documentation at:
http://docs.opencv.org/trunk/tutorial_face_main.html
I worked on a project with CV to recognize facial features. Most people don't understand the difference between Biometrics and Facial Recognition. There is a huge difference based on the fact that Biometrics is mainly based on histogram density matching while Facial Recognition implements this and vector support based on feature recognition from density. Check out the following link. This is the library you want to use if you are pursuing CV and Facial Recognition: www.betaface.com . Oleksander is awesome and based out of Germany, but he answers questions which is nice.
With OpenCV it's easy to get started with face detection. It comes with some predefined sets for feature detection, including face detection.
You might already know this one: OpenCV Wiki, FaceDetection
The important functions in this example are cvLoad and cvHaarDetectObjects. The first one loads the classifier and the second one applies it to an image.
The standard classifiers work pretty well. Of course you can train your own classifiers, if the standard ones don't fit your purpose.
As you said there are a lot of algorithms for face detection. Some of them might provide better results, but OpenCV is definitively a good start.

Computer Vision with Mathematica

Does anybody here do computer vision work on Mathematica? I would like to know what external libraries are available for doing that. The built in image processing functions are not enough. I am looking for things like SURF, stereo, camera calibration, multi-view geometry etc.
How difficult would it be to wrap OpenCV for use in Mathematica?
Apart from the extensive set of image processing tools that are now (version 8) natively present in Mathematica, and which include a number of CV algorithms like finding morphologic objects, image segmentation and feature detection (see figure below), there's the new LibraryLink functionality, which makes working with DLLs very easy. You wouldn't have to change OpenCV much to be able to call it from Mathematica. Just some wrappers for the functions to be called and you're basically done.
I don't think such a thing exists, but I'm getting started.
It has the advantage that you can perform some analytic methods... for example rather than hacking in openCV or even Matlab endlessly, you can compute analytically a quantity, and see that the method leading to this matrix is numerically unstable as a function of input variables. Thus you do not need to hack, as it would be pointless.
As for wrapping opencv, that doesn't seem to make sense. The correct procedure would be to fix bad implementations in opencv based on your analysis in Mathematica and on paper.
Agreeing with Peter, I don't believe that forcing Mathematica to use OpenCV is a great thing.
All of the computer vision people that I've talked to, read about, and seen examples are using Matlab and the Imaging toolkit. Its either that, or go with a OpenCV compatible language + OpenCV.
Mathematica has a rich set of tools for image processing, but I'm uncertain about the computer vision capabilities.

Image processing language/environment

I am interested in studying some image processing. I imagine matlab is the best way to go about that but right now I don't have access to matlab. I tried octave but for some reason it can't even load a png, bmp or anything other than 1 specific format. R doesn't seem to be the key here either.
What is the language of choice here? Perl?
Also can anyone point me to any other good tutorials that I may have missed on image processing?
Opencv is an excellent image processing library. Although written in C it comes with some high level tools to display images handle image files, mouse events etc so you can experiment without writing a lot of windows code.
It also works with python, although I haven't used it with the PIL.
If you are interested in how the algorithms work then implementing them yourself using python and numpy for the matrix ops is easy.
I guess it depends on what you want to do. Matlab certainly is a high end choice, but for a lot of things the image modules of general purpose programming languages do the trick.
I did some pixel mangling and image processing with PIL, the python image library. It is perfectly sufficient for processing single RGB images of reasonable size (say, what a consumer digital camera delivers). It can handle alpha channels, has some filters, more or less quick methods of accessing the pixel information - and it is python, a very straightforward and readable language.
The recommended language in my computer vision class was Ch with the OpenCV library. Ch is basically an interpreted version of C, the syntax is quite similar but has a few nice features, like treating arrays as matrices. OpenCV will house pretty much any image processing function you could need.
I think any free programming environments will do basic image processing well. If speed is not an issue, Processing will work fine and you can easily extend your code to Java in the future.
Have a look at Adobe Pixel Bender. It's really fun to play with.

Resources