Basically, I want to be able to compare two histograms, but not of whole images just specific areas. I have image A and have a specific rectangular region on it that I want to compare to another image B. Is there a way to get the histogram of a definable rectangular region on an image? I have the x y position of the rectangular area, as well as it's width and height, and want to get its histogram. I'm using opencv with python.
Sorry if that isn't very clear :(
(I'm setting up a program that takes a picture of a circuit board, and checks each solder pad for consistency with an image of a perfect board. If one pad is off, the program raises a flag saying that specific pad is off by x percent, not the whole board.
Note: The following is in C++ but I think it is not hard to find the equivalent functions for python.
You can find the histogram of an image using this tutorial. So for example for the lena image we get:
In your case, since you have the rectangle coordinates, you can just extract the ROI of the image:
// C++ code
cv::Mat image = cv::imread("lena.png", 0);
cv::Rect roiRect = cv::Rect(150, 150, 250, 250);
cv::Mat imageRoi = image(roiRect);
and then find the histogram of just the ROI with the same way as above:
Is this what you wanted (in theory at least) or I misunderstood?
Related
The image below has many circles. Click and zoom in to see the circles.
https://drive.google.com/open?id=1ox3kiRX5hf2tHDptWfgcbMTAHKCDizSI
What I want is counting the circles using any free language, such as python.
Is there a function or idea to do it?
Edit: I came up with a better solution, partially inspired by this answer below. I thought of this method originally (as noted in the OP comments) but I decided against it. The original image was just not good enough quality for it. However I improved that method and it works brilliantly for the better quality image. The original approach is first, and then the new approach at the bottom.
First approach
So here's a general approach that seems to work well, but definitely just gives estimates. This assumes that circles are roughly the same size.
First, the image is mostly blue---so it seems reasonable to just do the analysis on the blue channel. Thresholding the blue channel, in this case, using Otsu thresholding (which determines an optimal threshold value without input) seems to work very well. This isn't too much of a surprise since the distribution of color values is pretty much binary. Check the mask that results from it!
Then, do a connected component analysis on the mask to get the area of each component (component = white blob in the mask). The statistics returned from connectedComponentsWithStats() give (among other things) the area, which is exactly what we need. Then we can simply count the circles by estimating how many circles fit in a given component based on its area. Also note that I'm taking the statistics for every label except the first one: this is the background label 0, and not any of the white blobs.
Now, how large in area is a single circle? It would be best to let the data tell us. So you could compute a histogram of all the areas, and since there are more single circles than anything else, there will be a high concentration around 250-270 pixels or so for the area. Or you could just take an average of all the areas between something like 50 and 350 which should also get you in a similar ballpark.
Really in this histogram you can see the demarcations between single circles, double circles, triple, and so on quite easily. Only the larger components will give pretty rough estimates. And in fact, the area doesn't seem to scale exactly linearly. Blobs of two circles are slightly larger than two single circles, and blobs of three are larger still than three single circles, and so on, so this makes it a little difficult to estimate nicely, but rounding should still keep us close. If you want you could include a small multiplication parameter that increases as the area increases to account for that, but that would be hard to quantify without going through the histogram analytically...so, I didn't worry about this.
A single circle area divided by the average single circle area should be close to 1. And the area of a 5-circle group divided by the average circle area should be close to 5. And this also means that small insignificant components, that are 1 or 10 or even 100 pixels in area, will not count towards the total since round(50/avg_circle_size) < 1/2, so those will round down to a count of 0. Thus I should just be able to take all the component areas, divide them by the average circle size, round, and get to a decent estimate by summing them all up.
import cv2
import numpy as np
img = cv2.imread('circles.png')
mask = cv2.threshold(img[:, :, 0], 255, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
stats = cv2.connectedComponentsWithStats(mask, 8)[2]
label_area = stats[1:, cv2.CC_STAT_AREA]
min_area, max_area = 50, 350 # min/max for a single circle
singular_mask = (min_area < label_area) & (label_area <= max_area)
circle_area = np.mean(label_area[singular_mask])
n_circles = int(np.sum(np.round(label_area / circle_area)))
print('Total circles:', n_circles)
This code is simple and effective for rough counts.
However, there are definitely some assumptions here about the groups of circles compared to a normal circle size, and there are issues where circles that are at the boundaries will not be counted correctly (these aren't well defined---a two circle blob that is half cut off will look more like one circle---no clear way to count or not count these with this method). Further I just used automatic thresholding via Otsu here; you could get (probably better) results with more careful color filtering. Additionally in the mask generated by Otsu, some circles that are masked have a few pixels removed from their center. Morphology could add these pixels back in, which would give you a (slightly larger) more accurate area for the single circle components. Either way, I just wanted to give the general idea towards how you could easily estimate this with minimal code.
New approach
Before, the goal was to count circles. This new approach instead counts the centers of the circles. The general idea is you threshold and then flood fill from a background pixel to fill in the background (flood fill works like the paint bucket tool in photo editing apps), that way you only see the centers, as shown in this answer below.
However, this relies on global thresholding, which isn't robust to local lighting changes. This means that since some centers are brighter/darker than others, you won't always get good results with a single threshold.
Here I've created an animation to show looping through different threshold values; watch as some centers appear and disappear at different times, meaning you get different counts depending on the threshold you choose (this is just a small patch of the image, it happens everywhere):
Notice that the first blob to appear in the top left actually disappears as the threshold increases. However, if we actually OR each frame together, then each detected pixel persists:
But now every single speck appears, so we should clean up the mask each frame so that we remove single pixels as they come (otherwise they may build up and be hard to remove later). Simple morphological opening with a small kernel will remove them:
Applied over the whole image, this method works incredibly well and finds almost every single cell. There are only three false positives (detected blob that's not a center) and two misses I can spot, and the code is very simple. The final thing to do after the mask has been created is simply count the components, minus one for the background. The only user input required here is a single point to flood fill from that is in the background (seed_pt in the code).
img = cv2.imread('circles.png', 0)
seed_pt = (25, 25)
fill_color = 0
mask = np.zeros_like(img)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
for th in range(60, 120):
prev_mask = mask.copy()
mask = cv2.threshold(img, th, 255, cv2.THRESH_BINARY)[1]
mask = cv2.floodFill(mask, None, seed_pt, fill_color)[1]
mask = cv2.bitwise_or(mask, prev_mask)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
n_centers = cv2.connectedComponents(mask)[0] - 1
print('There are %d cells in the image.'%n_centers)
There are 874 cells in the image.
One possible solution would be to read the image using OpenCV, get its grayscale, then use Canny edge detection and perform countour finding in OpenCV. This will return a list of countours. It would look something like:
import cv2
image = cv2.imread('path-to-your-image')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# tweak the parameters of the GaussianBlur for best performance
blurred = cv2.GaussianBlur(gray, (7, 7), 0)
# again, try different values here
edged = cv2.Canny(blurred, 20, 140)
(_, contours, _) = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
print(len(contours))
If you have all images like this - consider thresholding it, not necessarily by auto threshold-seeking algorithm like Otsu, but rather using simplest threshold by a given threshold value. Yes, before thresholding you have to convert your color input to gray-scale, or take one of color channels. Then based on few experiments with channels and threshold values - determine threshold value to have circles with holes in monochrome thresholding result. Based on your png image I found value of 81 (intensity of gray varies from 0 to 255) to be great to threshold gray-scale version of your input to have such binary image with holes in place, as described above.
Then simply count those holes.
Holes can be determined by seed-filling white area, connected to image border. As result you will have white hole connected components on black background - so simply count them.
More details you can find here http://www.leptonica.com/filling.html and use leptonica primitives to do thresholding, hole counting an so on.
I am trying to detect the regions of traffic signs. Using OpenCV, my approach is as follows:
The color image:
Using the TanTriggs Preprocessing get rid of the illumination variances:
Equalize histogram:
And binarize (Cv2.Threshold(blobs, blobs, 127, 255, ThresholdTypes.BinaryInv):
Iterate each blob using ConnectedComponents and get the mean color value using the blob as mask. If it is a red color then it may be a red sign.
Then get contours of this blob using FindContours.
Simplify the contours using ApproxPolyDP and check the points of each contour:
If 3 points then triangle shape is acceptable --> candidate for triangle sign
If 4 points then shape is acceptable --> candidate
If more than 4 points, BBox dimensions are acceptable and most of the points are on the ellipse fitted (FitEllipse) --> candidate
This approach works for the separated blobs in the binary image, like the circular 100km sign in my example. However if there is a connection to the outside objects, like the triangle left bottom part in the binary image, it fails.
Because, the mean value of this blob is far from red!
Using Erosion helps in some cases, however makes it worse in many of the other images.
Using different threshold values for the binarization also works for some, but fails on many; like the erosion.
Using HoughCircle is just very slow and I couldn't manage to get good results playing with the parameters.
I have tried using matchShapes but couldn't get good results.
Can anybody show me another way the achieve what I want (with a reasonable computational time)?
Any information, or code in any language is wellcome.
Edit:
Using circularity measure (C=P^2/4πA) or the approach I have described above, triangle and ellips shapes can be found when they are separated. However when the contour is like this for example:
I could not find a robust way to extract the triangle piece. If I could, I would check the mean color, and decide if its a red sign candidate.
Sorry, I don't have the kudos to comment, but can't you use the red colour?
import common
myshow = common.myshow
img = cv2.imread("ms0QB.png")
grey = np.zeros(img.shape[:2],np.uint8)
hsv = cv2.cvtColor(img,cv2.COLOR_mask = np.logical_or(hsv[:,:,0]>160,hsv[:,:,0]<10 )
grey[mask] = 255
cv2.imshow("160<hue<182",grey)
cv2.waitKey()
I am trying to find a reliable method to calculate the corner points of a container. From these corner point’s idea is to calculate the center point of the container for the localization of robot, it means that the calculated center point will be the destination of robot in order to pick the container. For this I am looking for any suggestions to calculate the corner points or may be if any possibility to calculate the center point directly. Up to this point PCL library C/C++ is used for the processing of the 3D data.
The image below is the screenshot of the container.
thanks in advance.
afterApplyingPassthrough
I did the following things:
I binarized the image (black pixels = 0, green pixels = 1),
inverted the image (black pixels = 1, green pixels = 0),
eroded the image with 3x3 kernel N-times and dilated it with same kernel M-times.
Left: N=2, M=1;Right: N=6, M=6
After that:
I computed contours of all non-zero areas and
removed the contour that surrounded entire image.
This are the contours that remained:
I do not know how "typical" input image looks like in your case. Since I only have access to one sample image, I would rather not speculate about "general solution" that will be suitable for you. But to solve this particular case, you could analyze every contour in the following way:
compute rotatated rectangle that fits best around your contour (you need something similar to minAreaRect from OpenCV)
compute areas of rectangle and contour interior
if the difference between contour area and the area of the rotated bounding rectangle is small, the contour has approximately rectangular shape
find the contour that is both rectangular and satisfies some other condition (for example: typical area of the container). Assume that this belongs to container and compute its center.
I am not claiming that this is a solution that will work well in real world scenarios. It is also not fast. You should view it as a "sketch" that shows how to extract some useful information.
I assume the wheels maintain the cart a known offset from the floor and you can identify the floor. Filter out all points which are too close to the floor (this will remove wheels and everything but cart which will help limit data and simplify later steps.
If you isolate the cart, you could apply a simple average point (centroid), alternately, if that is not precise, you could try finding the bounding box of the isolated cart (min max in primary directions) and then take the centroid of that bounding box (this should be more accurate, but will still need a slight vertical offset due to the top handles).
If you can not isolate the cart or the other methods are not working well, you could try using PCL sample consensus specifically SACMODEL_LINE. This will be an involved strategy, but will give very solid results, basically run through and find each line and subtract its members from the cloud so as to find the next best line. After you have your 4 primary cart lines, use their parameters to find your centroid. *this would also be robust against random items being in or on the cart as well as carts of various sizes (assuming they always had linear perpendicular walls)
I am learning JavaCV and want to extract part of images dynamically based on color.
As identification I am outlining the region which I need to extract with a color. Is there anyway I can do extract ROI based on color outline. Any help appreciated.
Here is the Sample Image
it is quite simple. Since your figure has 4 corners hence you ought to follow the following steps.
1.identify the orientation of the image and store the points in a MatofPoint2f in a specific order.
(clock wise or anti clockwise- For this you can use Math.atan2(p1(y)-centerpoint(y),p1(x)-centerpoint(x)) and then sort the points according to the result of the equation. find the center point by finding the avg all the xcoords and y coords or any method you prefer).
2.Create a MatofPoint2f containing the corner coords of the result image size you want the cropped image in.
3.use Imgproc.getPerspectiveTransform() to perform the cropping.
4.Finally use Imgproc.warpPerspective() to obtain the output that is desired.
And for creating the border of the ROI the best way to go is to threshold the image by using some specific range so as to extract only those parts of the spectrum which is required.
So I am very new to OpenCV (2.1), so please keep that in mind.
So I managed to calibrate my cheap web camera that I am using (with a wide angle attachment), using the checkerboard calibration method to produce the intrinsic and distortion coefficients.
I then have no trouble feeding these values back in and producing image maps, which I then apply to a video feed to correct the incoming images.
I run into an issue however. I know when it is warping/correcting the image, it creates several skewed sections, and then formats the image to crop out any black areas. My question then is can I view the complete warped image, including some regions that have black areas? Below is an example of the black regions with skewed sections I was trying to convey if my terminology was off:
An image better conveying the regions I am talking about can be found here! This image was discovered in this post.
Currently: The cvRemap() returns basically the yellow box in the image linked above, but I want to see the whole image as there is relevant data I am looking to get out of it.
What I've tried: Applying a scale conversion to the image map to fit the complete image (including stretched parts) into frame
CvMat *intrinsic = (CvMat*)cvLoad( "Intrinsics.xml" );
CvMat *distortion = (CvMat*)cvLoad( "Distortion.xml" );
cvInitUndistortMap( intrinsic, distortion, mapx, mapy );
cvConvertScale(mapx, mapx, 1.25, -shift_x); // Some sort of scale conversion
cvConvertScale(mapy, mapy, 1.25, -shift_y); // applied to the image map
cvRemap(distorted,undistorted,mapx,mapy);
The cvConvertScale, when I think I have aligned the x/y shift correctly (guess/checking), is somehow distorting the image map making the correction useless. There might be some math involved here I am not correctly following/understanding.
Does anyone have any other suggestions to solve this problem, or what I might be doing wrong? I've also tried trying to write my own code to fix distortion issues, but lets just say OpenCV knows already how to do it well.
From memory, you need to use InitUndistortRectifyMap(cameraMatrix,distCoeffs,R,newCameraMatrix,map1,map2), of which InitUndistortMap is a simplified version.
cvInitUndistortMap( intrinsic, distort, map1, map2 )
is equivalent to:
cvInitUndistortRectifyMap( intrinsic, distort, Identity matrix, intrinsic,
map1, map2 )
The new parameters are R and newCameraMatrix. R species an additional transformation (e.g. rotation) to perform (just set it to the identity matrix).
The parameter of interest to you is newCameraMatrix. In InitUndistortMap this is the same as the original camera matrix, but you can use it to get that scaling effect you're talking about.
You get the new camera matrix with GetOptimalNewCameraMatrix(cameraMat, distCoeffs, imageSize, alpha,...). You basically feed in intrinsic, distort, your original image size, and a parameter alpha (along with containers to hold the result matrix, see documentation). The parameter alpha will achieve what you want.
I quote from the documentation:
The function computes the optimal new camera matrix based on the free
scaling parameter. By varying this parameter the user may retrieve
only sensible pixels alpha=0, keep all the original image pixels if
there is valuable information in the corners alpha=1, or get something
in between. When alpha>0, the undistortion result will likely have
some black pixels corresponding to “virtual” pixels outside of the
captured distorted image. The original camera matrix, distortion
coefficients, the computed new camera matrix and the newImageSize
should be passed to InitUndistortRectifyMap to produce the maps for
Remap.
So for the extreme example with all the black bits showing you want alpha=1.
In summary:
call cvGetOptimalNewCameraMatrix with alpha=1 to obtain newCameraMatrix.
use cvInitUndistortRectifymap with R being identity matrix and newCameraMatrix set to the one you just calculated
feed the new maps into cvRemap.