Do multiple NSURLConnections create multiple NSThreads? - ios

NSURLConnection's documentation says that NSURLConnection is run on a separate thread and that delegate methods are called on a thread that started the connection.
I have more that one NSURLConnection objects wrapped in "URLDownload < NSURLConnectionDelegate >" objects which I run in parallel.
While pausing my program (at some time I put a breakpoint in it) and looking into Debug Navigator, I see only one com.apple.NSURLConnectionLoader thread.
Here is how I think this works:
I create 5 URLDownload object (each of them has its own NSURLConnection)
5 threads are created (one for each NSURLConnection)
Each NSURLConnection calls it's delegate methods on the thread that started them.
So there are 5 threads (one for each NSURLConnection) but their data (didReceiveData... method and others) is handled on a single thread.
Did I get this right?

Asynchronous NSURLConnection's will do there work off the main thread, that is all you need to know.
Threads use a lot of resources relative to the amount of work of a network connection, so 1 asynchronous NSURLConnection may use 1 background thread, 2 asynchronous NSURLConnections may use 2 background threads, but 100 asynchronous NSURLConnections probably won't use 100 background threads.
NSURLConnection is a black box that will manage the optimum amount for you. This could be based on how many processors you have, your network speed, etc (NB i'm not saying i know how it works under the hood, just that you don't need to know - it will do the right thing. One thread per connection would be a pretty horrible way todo it).
The delegate methods (didReceiveData, etc) get called on the thread that started the connection, so that isn't the same as saying that they are called on a single thread. If you start 5 connections on five different threads you will get the callbacks on five different threads.

Related

GCD and Threads

I want to understand something about GCD and Threads.
I have a for loop in my view controller which asks my model to do some async network request.
So if the loop runs 5 times, the model sends out 5 network requests.
Is it correct to state that 5 threads have been created by my model considering the fact that I'm using NSURLConnection's sendAsyncRequest and the completion handlers will be called on an additional 5 threads ?
Now, If I ask my view controller to execute this for loop on a different thread and in every iteration of the loop, the call to the model should be dependent on the previous iteration, would I be creating an "Inception" of threads here ?
Basically, I want the subsequent async requests to my server only if the previous thread has completed entirely (By entirely I mean all of its sub threads should have finished executing too.)
I can't even frame the question properly because I'm massively confused myself.
But if anybody could help with anything, that would be helpful.
It is not correct to state that five threads have been created in the general case.
There is no one-to-one mapping between threads and blocks. GCD is an implementation of thread pooling.
A certain number of threads are created according to the optimal setup for that device — the cost of creating and maintaing threads under that release of the OS, the number of processor cores available, the number of threads it already has but which are presently blocked and any other factors Apple cares to factor in may all be relevant.
GCD will then spread your blocks over those threads. Or it may create new threads. But it won't necessarily.
Beyond that queues are just ways of establishing the sequencing between blocks. A serial dispatch queue does not necessarily own its own thread. All concurrent dispatch queues do not necessarily own their own threads. But there's no reason to believe that any set of queues shares any threads.
The exact means of picking threads for blocks has changed between versions of the OS. E.g. iOS 4 was highly profligate in thread creation, in a way that iOS 5+ definitely haven't been.
GCD will just try to do whatever is best in the circumstances. Don't waste your time trying to second guess it.
"Basically, I want the subsequent async requests to my server only if the previous thread has completed entirely (By entirely I mean all of its sub threads should have finished executing too.)"
Only focusing on the above statement to avoid confusion. Simple solution would be create a queue. feed the queue with 5 loops. Each loop will be making network request synchronously(you can use sendSynchronousRequest: method available in NSURLConnection), performing the operations after request completion and then start the next loop. queue following FIFO will execute the your requests subsequently.
GCD : Think of this as a simple queue that can accept tasks. Tasks are blocks of your code. You can put in as many tasks as you want in a queue (permitting system limits). Queues come in different flavors. Concurrent vs Serial. Main vs Global. High Priority vs Low Priority. A queue is not a thread.
Thread : It is a single line of execution of code in sequence. You can have multiple threads working on your code at the same time. A thread is not a queue.
Once you separate the 2 entities things start become clear.
GCD basically uses the threads in the process to work on tasks. In a serial queue everything is processed in sequence. So you don't need to have synchronization mechanisms in your code, the very nature of serial queue ensures synchronization. If this is a concurrent queue (i.e. 2 or more tasks being processed at the same time, then you need to ensure critical sections of your code are protected with synchronization).
Here is how you queue work to be done.
dispatch_async(_yourDispatchQueue, ^() {
NSLog (#"work queued");
});
The above NSLog will now get executed in a background thread in a near future time, but in a background thread.
If you notice when we put a request in we use dispatch_async. The other variation is dispatch_sync. The different between the 2 is after you put the request in the queue, the async variation will move on. The sync variation will not !!
If you are going to use a GCD for NSURLConnection you need to be careful on which thread you start the connection. Here is a SO link for more info. GCD with NSURLConnection

What is the difference between 'thread' and 'queue' in iOS development? [duplicate]

This question already has answers here:
Use of the terms "queues", "multicore", and "threads" in Grand Central Dispatch
(3 answers)
Closed 8 years ago.
I am new to iOS development. Now I am quite confused about the two concepts: "thread" and "queue". All I know is that they both are about multithread programming. Can anyone interpret those two concepts and the difference between them for me?
Thanks in advance!
How NSOperationQueue and NSThread Works:
NSThread:
iOS developers have to write code for the work/process he want to perform along with for the creation and management of the threads themselves.
iOS developers have to be careful about a plan of action for using threads.
iOS developer have to manage posiable problems like reuseability of thread, lockings etc. by them self.
Thread will consume more memory too.
NSOperationQueue:
The NSOperation class is an abstract class which encapsulates the code and data associated with a single task.
Developer needs to use subclass or one of the system-defined subclasses of NSOperation to perform the task.
Add operations into NSOperationQueue to execute them.
The NSOperationQueue creates a new thread for each operation and runs them in the order they are added.
Operation queues handle all of the thread management, ensuring that operations are executed as quickly and efficiently as possible.
An operation queue executes operations either directly by running them on secondary threads or indirectly using GCD (Grand Central Dispatch).
It takes care of all of the memory management and greatly simplifies the process.
If you don’t want to use an operation queue, you can also execute an operation by calling its start method. It may make your code too complex.
How To Use NSThread And NSOperationQueue:
NSThread:
Though Operation queues is the preferred way to perform tasks concurrently, depending on application there may still be times when you need to create custom threads.
Threads are still a good way to implement code that must run in real time.
Use threads for specific tasks that cannot be implemented in any other way.
If you need more predictable behavior from code running in the background, threads may still offer a better alternative.
NSOperationQueue:
Use NSOperationQueue when you have more complex operations you want to run concurrently.
NSOperation allows for subclassing, dependencies, priorities, cancellation and a supports a number of other higher-level features.
NSOperation actually uses GCD under the hood so it is as multi-core, multi-thread capable as GCD.
Now you should aware about advantages and disadvantages of NSTread and NSOperation. You can use either of them as per needs of your application.
Before you read my answer you might want to consider reading this - Migrating away from Threads
I am keeping the discussion theoretical as your question does not have any code samples. Both these constructs are required for increasing app responsiveness & usability.
A message queue is a data structure for holding messages from the time they're sent until the time the receiver retrieves and acts on them. Generally queues are used as a way to 'connect' producers (of data) & consumers (of data).
A thread pool is a pool of threads that do some sort of processing. A thread pool will normally have some sort of thread-safe queue (refer message queue) attached to allow you to queue up jobs to be done. Here the queue would usually be termed 'task-queue'.
So in a way thread pool could exist at your producer end (generating data) or consumer end (processing the data). And the way to 'pass' that data would be through queues. Why the need for this "middleman" -
It decouples the systems. Producers do not know about consumers & vice versa.
The Consumers are not bombarded with data if there is a spike in Producer data. The queue length would increase but the consumers are safe.
Example:
In iOS the main thread, also called the UI thread, is very important because it is in charge of dispatching the events to the appropriate widget and this includes the drawing events, basically the UI that the user sees & interacts.
If you touch a button on screen, the UI thread dispatches the touch event to the app, which in turn sets its pressed state and posts an request to the event queue. The UI thread dequeues the request and notifies the widget to redraw itself.

What is the best networking solution for a complex multithreaded app?

I have a streaming iOS app that captures video to Wowza servers.
It's a beast, and it's really finicky.
I'm grabbing configuration settings from a php script that shoots out JSON.
Now that I've implemented that, I've run into some strange threading issues. My app connects to the host, says its streaming, but never actually sends packets.
Getting rid of the remote configuration NSURLConnection (which I've made sure is properly formatted) delegate fixes the problem. So I'm thinking either some data is getting misconstrued across threads or something like that.
What will help me is knowing:
Are NSURLConnection delegate methods called on the main thread?
Will nonatomic data be vulnerable in a delegate method?
When dealing with a complex threaded app, what are the best practices for grabbing data from the web?
Have you looked at AFNetworking?
http://www.raywenderlich.com/30445/afnetworking-crash-course
https://github.com/AFNetworking/AFNetworking
It's quite robust and helps immensely with the threading, and there are several good tutorials.
Are NSURLConnection delegate methods called on the main thread?
Yes, on request completion it gives a call back on the main thread if you started it on the main thread.
Will nonatomic data be vulnerable in a delegate method?
Generally collection values (like array) are vulnerable with multiple threads; the rest shouldn't create anything other than a race problem.
When dealing with a complex threaded app, what are the best practices for grabbing data from the web?
I feel it's better to use GCD for handling your threads, and asynchronous retrieval using NSURLConnection should be helpful. There are few network libraries available to do the boilerplate code for you, such as AFNetworking, and ASIHTTPRequest (although that is a bit old).
Are NSURLConnection delegate methods called on the main thread?
Delegate methods can be executed on a NSOperationQueue or a thread. If you not explicitly schedule the connection, it will use the thread where it receives the start message. This can be the main thread, but it can also any other secondary thread which shall also have a run loop.
You can set the thread (indirectly) with method
- (void)scheduleInRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode
which sets the run loop which you retrieved from the current thread. A run loop is associated to a thread in a 1:1 relation. That is, in order to set a certain thread where the delegate methods shall be executed, you need to execute on this thread, retrieve the Run Loop from the current thread and send scheduleInRunLoop:forMode: to the connection.
Setting up a dedicated secondary thread requires, that this thread will have a Run Loop. Ensuring this is not always straight forward and requires a "hack".
Alternatively, you can use method
- (void)setDelegateQueue:(NSOperationQueue *)queue
in order to set the queue where the delegate methods will be executed. Which thread will be actually used for executing the delegates is then undetermined.
You must not use both methods - so schedule on a thread OR a queue. Please consult the documentation for more information.
Will nonatomic data be vulnerable in a delegate method?
You should always synchronize access to shared resources - even for integers. On certain multiprocessor systems it is not even guaranteed that accesses to a shared integer is safe. You will have to use memory barriers on both threads in order to guarantee that.
You might utilize serial queues (either NSOperationQueue or dispatch queue) to guarantee safe access to shared resources.
When dealing with a complex threaded app, what are the best practices for grabbing data from the web?
Utilize queues, as mentioned, then you don't have to deal with threads. "Grabbing data" is not only a threading problem ;)
If you prefer a more specific answer you would need to describe your problem in more detail.
To answer your first question: The delegate methods are called on the thread that started the asynchronous load operation for the associated NSURLConnection object.

iOS - Concurrent access to memory resources

My app downloads several resources from server, data and data descriptors. These downloads, triggered by user actions, can be performed simultaneously, let's say, up to 50 downloads at a time. All these asynchronous tasks end up creating objects in memory, (e.g. appending leaves to data structures, such as adding keys to mutable dictionaries or objects to arrays). My question is: can this cause stability issues? For instance, if several simultaneous tasks try to add keys to the same dictionary, am I supposed to handle the situation, placing some kind of locks? If I implement a for cycle which looks for graphical elements in an array, is it possible that other running tasks might change the array content 'during' the cycle? Any reference or major, general orientation about this multitasking, multithreading issues other than official documentation?
Depends how you are dealing with the downloads - if you are using NSURLConnection it handles the separate threading / concurrency for you and your code is reentrant thus you don't have to worry about simultaneous action.
If you are creating your own threads you potentially have issues.
EDIT:
Your code runs in a main thread (the main run loop), lets say you have an NSURLConnection that is also running then it will run in a separate thread. However your delegate code that deals with events that happen while the connection is in progress runs in your run loop, not in the other thread. This means your code can only ever execute one thing at a time. A connection succeeded method would not get called at the same time as any of your other code. If you had a for loop running then it would block your main thread until it has finished looping, in the meanwhile if the connection finished while the for loop is still running then your delegate code will not execute until after the loop has finished.
You may want to look into Grand Central Dispatch's (GCD) and barrier blocks. Barrier blocks will allow you to do what y oh want in the background and "lock" resources.
Check out the Apple documentation and Mike Ash's blog post here on GCD.
The basic gist is that you use a concurrent queue that you create to perform the reads and use a barrier block to block all access to that resource for writing. good stuff.
Good luck
Tim

why my background working thread is blocking UI thread?

I am working on an app, which uploads native contacts to server then get responses(JSON, a contact list that already installed the app). When native contacts are large enough, server response will be slow and unstable. And user cannot do other things. so I put network request into background thread. every time I will upload 100 contacts, do some tasks , then next 100 contacts until loop finish.
But in running, the result is not as expected. background thread is running, it keeps to request server. UI thread is blocked, I still cannot do anything.
is this cause a long loop in background thread? Although I have 2 thread, but they will compete CPU resources(test device is iPod, 1 core. And I think this may not related core numbers)?
Could anyone tell me hints on how to handle this kind of scenario? Thanks in advance!
Update:
I have found the root cause. A global variable in App delegate is set to wrong value, therefore UI behavior is weird. I found this by comment all network request method. So this problem is not related with multiple threading. Sorry for the bother.
I think there needs to be some clarification as to how you are performing the network operations.
1st, NSOperatiomQueue deals with NSOperations, so you are presumably wrapping your network code in an NSOperation subclass.
2nd, are you using NSURLConnections for your networking code?
3rd, is the blocking part the NSURLConnection or you delegate callback for NSURLConnection?
1 thing to note is that plain ol' NSURLConnections are implemented under the hood multithreaded. The object is placed into your main threads run loop by default (when run from the main thread), but the object is just a wrapper that handles callbacks to the delegate from the lower level networking code (BSD sockets) which happens on another thread.
You really shouldn't be able to block your UI with NSURLConnections on the main thread, unless A) you are blocking the thread with expensive code in the delegate callback methods or B) you are overwhelming your run loop with too many simultaneous URL connections (which is where NSOperationQueue's setMaxConcurrentOperationsCount: comes into play)

Resources