scikit-learn RandomForestClassifier produces 'unexpected' results - machine-learning

I'm trying to use sk-learn's RandomForestClassifier for a binary classification task (positive and negative examples). My training data contains 1.177.245 examples with 40 features, in SVM-light format (sparse vectors) which I load using sklearn.dataset's load_svmlight_file. It produces a sparse matrix of 'feature values' (1.177.245 * 40) and one array of 'target classes' (1s and 0s, 1.177.245 of them). I don't know whether this is worrysome, but the trainingdata has 3552 positives and the rest are all negative.
As the sk-learn's RFC doesn't accept sparse matrices, I convert the sparse matrix to a dense array (if I'm saying that right? Lots of 0s for absent features) using .toarray(). I print the matrix before and after converting to arrays and that seems to be going all right.
When I initiate the classifier and start fitting it to the data, it takes this long:
[Parallel(n_jobs=40)]: Done 1 out of 40 | elapsed: 24.7min remaining: 963.3min
[Parallel(n_jobs=40)]: Done 40 out of 40 | elapsed: 27.2min finished
(is that output right? Those 963 minutes take about 2 and a half...)
I then dump it using joblib.dump.
When I re-load it:
RandomForestClassifier: RandomForestClassifier(bootstrap=True, compute_importances=True,
criterion=gini, max_depth=None, max_features=auto,
min_density=0.1, min_samples_leaf=1, min_samples_split=1,
n_estimators=1500, n_jobs=40, oob_score=False,
random_state=<mtrand.RandomState object at 0x2b2d076fa300>,
verbose=1)
And test it on real trainingdata (consisting out of 750.709 examples, exact same format as training data) I get "unexpected" results. To be exact; only one of the examples in the testingdata is classified as true. When I train on half the initial trainingdata and test on the other half, I get no positives at all.
Now I have no reason to believe anything is wrong with what's happening, it's just that I get weird results, and furthermore I think it's all done awfully quick. It's probably impossible to make a comparison, but training a RFClassifier on the same data using rt-rank (also with 1500 iterations, but with half the cores) takes over 12 hours...
Can anyone enlighten me whether I have any reason to believe something is not working the way it's supposed to? Could it be the ratio of positives to negatives in the training data? Cheers.

Indeed this dataset is very very imbalanced. I would advise you to subsample the negative examples (e.g. pick n_positive_samples of them at random) or to oversample the positive example (the latter is more expensive and but might yield better models).
Also are you sure that all your features are numerical features (larger values means something in real life)? If some of them are categorical integer markers, those feature should be exploded as one-of-k boolean encodings instead as scikit-learn implementation of random forest s cannot directly deal with categorical data.

Related

Is this LSTM underfitting?

I am trying to create a model that predicts if it will rain in the next 5 days (multi-step) or not, so I dont need the precipitation value, just a "yes" or "no". I've been testing with some different tools/algorithms and I guess the big challenge here is dealing with the zero skewed data.
The dataset consists of hourly data that has columns such as precipitation, temperature, pressure, wind speed, humidity. It has around 1 milion rows. There is no requisite to use a multivariate approach.
Rain occurs mostly on months 1,2,3,11 and 12.
So I tried using a univariate LSTM on the data, and with hourly sample I had the best results. I used the following architecture:
model=Sequential()
model.add(LSTM(150,return_sequences=True,input_shape=(1,look_back)))
model.add(LSTM(50,return_sequences=True))
model.add(LSTM(50))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
history = model.fit(trainX, trainY, epochs=15, batch_size=4096, validation_data=(testX, testY), shuffle=False)
I'm using a lookback value of 24*60, which should mean 2 months.
Train/Validation Loss:
https://i.stack.imgur.com/CjDbR.png
Final result:
https://i.stack.imgur.com/p6SnD.png
So I read that this train/validation loss means the model is underfitting, is it? What could I do to prevent this?
Before using LSTM I tried using Prophet, which rendered really bad results and tried used autoarima, but it couldn't handle a yearly seasonality (365 days).
In case of underfitting what you can do is icreasing the learning rate, increasing training duration and number of training data.
It is also worth having some external metric such as the F1 score because loss isn't a good metrics for human evaluation.
Just looking at your example I would start with experimenting a bit with the loss function, it seems like your data is binary so it would be wiser to use a binary loss instead of a regression loss

Can intercept and regression coefficients (Beta values) be very high?

I have 38 variables, like oxygen, temperature, pressure, etc and have a task to determine the total yield produced every day from these variables. When I calculate the regression coefficients and intercept value, they seem to be abnormal and very high (Impractical). For example, if 'temperature' coefficient was found to be +375.456, I could not give a meaning to them saying an increase in one unit in temperature would increase yield by 375.456g. That's impractical in my scenario. However, the prediction accuracy seems right. I would like to know, how to interpret these huge intercept( -5341.27355) and huge beta values shown below. One other important point is that I removed multicolinear columns and also, I am not scaling the variables/normalizing them because I need beta coefficients to have meaning such that I could say, increase in temperature by one unit increases yield by 10g or so. Your inputs are highly appreciated!
modl.intercept_
Out[375]: -5341.27354961415
modl.coef_
Out[376]:
array([ 1.38096017e+00, -7.62388829e+00, 5.64611255e+00, 2.26124164e-01,
4.21908571e-01, 4.50695302e-01, -8.15167717e-01, 1.82390184e+00,
-3.32849969e+02, 3.31942553e+02, 3.58830763e+02, -2.05076898e-01,
-3.06404757e+02, 7.86012402e+00, 3.21339318e+02, -7.00817205e-01,
-1.09676321e+04, 1.91481734e+00, 6.02929848e+01, 8.33731416e+00,
-6.23433431e+01, -1.88442804e+00, 6.86526274e+00, -6.76103795e+01,
-1.11406021e+02, 2.48270706e+02, 2.94836048e+01, 1.00279016e+02,
1.42906659e-02, -2.13019683e-03, -6.71427100e+02, -2.03158515e+02,
9.32094007e-03, 5.56457014e+01, -2.91724945e+00, 4.78691176e-01,
8.78121854e+00, -4.93696073e+00])
It's very unlikely that all of these variables are linearly correlated, so I would suggest that you have a look at simple non-linear regression techniques, such as Decision Trees or Kernel Ridge Regression. These are however more difficult to interpret.
Going back to your issue, these high weights might well be due to there being some high amount of correlation between the variables, or that you simply don't have very much training data.
If you instead of linear regression use Lasso Regression, the solution is biased away from high regression coefficients, and the fit will likely improve as well.
A small example on how to do this in scikit-learn, including cross validation of the regularization hyper-parameter:
from sklearn.linear_model LassoCV
# Make up some data
n_samples = 100
n_features = 5
X = np.random.random((n_samples, n_features))
# Make y linear dependent on the features
y = np.sum(np.random.random((1,n_features)) * X, axis=1)
model = LassoCV(cv=5, n_alphas=100, fit_intercept=True)
model.fit(X,y)
print(model.intercept_)
If you have a linear regression, the formula looks like this (y= target, x= features inputs):
y= x1*b1 +x2*b2 + x3*b3 + x4*b4...+ c
where b1,b2,b3,b4... are your modl.coef_. AS you already realized one of your bigges number is 3.319+02 = 331 and the intercept is also quite big with -5431.
As you already mentioned the coeffiecient variables means how much the target variable changes, if the coeffiecient feature changes with 1 unit and all others features are constant.
so for your interpretation, the higher the absoult coeffienct, the higher the influence of your analysis. But it is important to note that the model is using a lot of high coefficient, that means your model is not depending only of one variable

Scikit_learn's PolynomialFeatures with logistic regression resulting in lower scores

I have a dataset X whose shape is (1741, 61). Using logistic regression with cross_validation I was getting around 62-65% for each split (cv =5).
I thought that if I made the data quadratic, the accuracy is supposed to increase. However, I'm getting the opposite effect (I'm getting each split of cross_validation to be in the 40's, percentage-wise) So,I'm presuming I'm doing something wrong when trying to make the data quadratic?
Here is the code I'm using,
from sklearn import preprocessing
X_scaled = preprocessing.scale(X)
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(3)
poly_x =poly.fit_transform(X_scaled)
classifier = LogisticRegression(penalty ='l2', max_iter = 200)
from sklearn.cross_validation import cross_val_score
cross_val_score(classifier, poly_x, y, cv=5)
array([ 0.46418338, 0.4269341 , 0.49425287, 0.58908046, 0.60518732])
Which makes me suspect, I'm doing something wrong.
I tried transforming the raw data into quadratic, then using preprocessing.scale, to scale the data, but it was resulting in an error.
UserWarning: Numerical issues were encountered when centering the data and might not be solved. Dataset may contain too large values. You may need to prescale your features.
warnings.warn("Numerical issues were encountered "
So I didn't bother going this route.
The other thing that's bothering is the speed of the quadratic computations. cross_val_score is taking around a couple of hours to output the score when using polynomial features. Is there any way to speed this up? I have an intel i5-6500 CPU with 16 gigs of ram, Windows 7 OS.
Thank you.
Have you tried using the MinMaxScaler instead of the Scaler? Scaler will output values that are both above and below 0, so you will run into a situation where values with a scaled value of -0.1 and those with a value of 0.1 will have the same squared value, despite not really being similar at all. Intuitively this would seem to be something that would lower the score of a polynomial fit. That being said I haven't tested this, it's just my intuition. Furthermore, be careful with Polynomial fits. I suggest reading this answer to "Why use regularization in polynomial regression instead of lowering the degree?". It's a great explanation and will likely introduce you to some new techniques. As an aside #MatthewDrury is an excellent teacher and I recommend reading all of his answers and blog posts.
There is a statement that "the accuracy is supposed to increase" with polynomial features. That is true if the polynomial features brings the model closer to the original data generating process. Polynomial features, especially making every feature interact and polynomial, may move the model further from the data generating process; hence worse results may be appropriate.
By using a 3 degree polynomial in scikit, the X matrix went from (1741, 61) to (1741, 41664), which is significantly more columns than rows.
41k+ columns will take longer to solve. You should be looking at feature selection methods. As Grr says, investigate lowering the polynomial. Try L1, grouped lasso, RFE, Bayesian methods. Try SMEs (subject matter experts who may be able to identify specific features that may be polynomial). Plot the data to see which features may interact or be best in a polynomial.
I have not looked at it for a while but I recall discussions on hierarchically well-formulated models (can you remove x1 but keep the x1 * x2 interaction). That is probably worth investigating if your model behaves best with an ill-formulated hierarchical model.

Optimal parameter estimation for a classifier with multiple parameters

The image on the left shows a standard ROC curve formed by sweeping a single threshold and recording the corresponding True Positive Rate (TPR) and False Positive Rate (FPR).
The image on the right shows my problem setup where there are 3 parameters, and for each, we have only 2 choices. Together, it produces 8 points as depicted on the graph. In practice, I intend to have thousands of possible combinations of 100s of parameters, but the concept remains the same in this down-scaled case.
I intend to find 2 things here:
Determine the optimum parameter(s) for the given data
Provide an overall performance score for all combinations of parameters
In the case of the ROC curve on the left, this is done easily using the following methods:
Optimal parameter: Maximal difference of TPR and FPR with a cost component (I believe it is called the J-statistic?)
Overall performance: Area under the curve (the shaded portion in the graph)
However, for my case in the image on the right, I do not know if the methods I have chosen are the standard principled methods that are normally used.
Optimal parameter set: Same maximal difference of TPR and FPR
Parameter score = TPR - FPR * cost_ratio
Overall performance: Average of all "parameter scores"
I have found a lot of reference material for the ROC curve with a single threshold and while there are other techniques available to determine the performance, the ones mentioned in this question is definitely considered a standard approach. I found no such reading material for the scenario presented on the right.
Bottomline, the question here is two-fold: (1) Provide methods to evaluate the optimal parameter set and overall performance in my problem scenario, (2) Provide reference that claims the suggested methods to be a standard approach for the given scenario.
P.S.: I had first posted this question on the "Cross Validated" forum, but didn't get any responses, in fact, got only 7 views in 15 hours.
I'm going to expand a little on aberger's previous answer on a Grid Search. As with any tuning of a model it's best to optimise hyper-parameters using one portion of the data and evaluate those parameters using another proportion of the data, so GridSearchCV is best for this purpose.
First I'll create some data and split it into training and test
import numpy as np
from sklearn import model_selection, ensemble, metrics
np.random.seed(42)
X = np.random.random((5000, 10))
y = np.random.randint(0, 2, 5000)
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.3)
This gives us a classification problem, which is what I think you're describing, though the same would apply to regression problems too.
Now it's helpful to think about what parameters you may want to optimise. A cross-validated grid search is a computational expensive process, so the smaller the search space the quicker it gets done. I will show an example for a RandomForestClassifier because it's my go to model.
clf = ensemble.RandomForestClassifier()
parameters = {'n_estimators': [10, 20, 30],
'max_features': [5, 8, 10],
'max_depth': [None, 10, 20]}
So now I have my base estimator and a list of parameters that I want to optimise. Now I just have to think about how I want to evaluate each of the models that I'm going to build. It seems from your question that you're interested in the ROC AUC, so that's what I'll use for this example. Though you can chose from many default metrics in scikit or even define your own.
gs = model_selection.GridSearchCV(clf, param_grid=parameters,
scoring='roc_auc', cv=5)
gs.fit(X_train, y_train)
This will fit a model for all possible combinations of parameters that I have given it, using 5-fold cross-validation evaluate how well those parameters performed using the ROC AUC. Once that's been fit, we can look at the best parameters and pull out the best performing model.
print gs.best_params_
clf = gs.best_estimator_
Outputs:
{'max_features': 5, 'n_estimators': 30, 'max_depth': 20}
Now at this point you may want to retrain your classifier on all of the training data, as currently it's been trained using cross-validation. Some people prefer not to, but I'm a retrainer!
clf.fit(X_train, y_train)
So now we can evaluate how well the model performs on both our training and test set.
print metrics.classification_report(y_train, clf.predict(X_train))
print metrics.classification_report(y_test, clf.predict(X_test))
Outputs:
precision recall f1-score support
0 1.00 1.00 1.00 1707
1 1.00 1.00 1.00 1793
avg / total 1.00 1.00 1.00 3500
precision recall f1-score support
0 0.51 0.46 0.48 780
1 0.47 0.52 0.50 720
avg / total 0.49 0.49 0.49 1500
We can see that this model has overtrained by the poor score on the test set. But this is not surprising as the data is just random noise! Hopefully when performing these methods on data with a signal you will end up with a well-tuned model.
EDIT
This is one of those situations where 'everyone does it' but there's no real clear reference to say this is the best way to do it. I would suggest looking for an example close to the classification problem that you're working on. For example using Google Scholar to search for "grid search" "SVM" "gene expression"
I feeeeel like we're talking about Grid Search in scikit-learn. It (1), provides methods to evaluate optimal (hyper)parameters and (2), is implemented in a massively popular and well referenced statistical software package.

Normalizing feature values for SVM

I've been playing with some SVM implementations and I am wondering - what is the best way to normalize feature values to fit into one range? (from 0 to 1)
Let's suppose I have 3 features with values in ranges of:
3 - 5.
0.02 - 0.05
10-15.
How do I convert all of those values into range of [0,1]?
What If, during training, the highest value of feature number 1 that I will encounter is 5 and after I begin to use my model on much bigger datasets, I will stumble upon values as high as 7? Then in the converted range, it would exceed 1...
How do I normalize values during training to account for the possibility of "values in the wild" exceeding the highest(or lowest) values the model "seen" during training? How will the model react to that and how I make it work properly when that happens?
Besides scaling to unit length method provided by Tim, standardization is most often used in machine learning field. Please note that when your test data comes, it makes more sense to use the mean value and standard deviation from your training samples to do this scaling. If you have a very large amount of training data, it is safe to assume they obey the normal distribution, so the possibility that new test data is out-of-range won't be that high. Refer to this post for more details.
You normalise a vector by converting it to a unit vector. This trains the SVM on the relative values of the features, not the magnitudes. The normalisation algorithm will work on vectors with any values.
To convert to a unit vector, divide each value by the length of the vector. For example, a vector of [4 0.02 12] has a length of 12.6491. The normalised vector is then [4/12.6491 0.02/12.6491 12/12.6491] = [0.316 0.0016 0.949].
If "in the wild" we encounter a vector of [400 2 1200] it will normalise to the same unit vector as above. The magnitudes of the features is "cancelled out" by the normalisation and we are left with relative values between 0 and 1.

Resources