How many bytes is a Hollerith card? - storage

I was showing my students a Hollerith card this morning to show them some programmer's artifacts, along with an 8 inch floppy, a 5 1/4 inch floppy, a 3/12 inch floppy, an old reel-to-reel tape, etc.
Q: How many bytes could a Hollerith card hold?

Hollerith cards have 80 columns, each holding a single ASCII or EBCDIC character.
http://en.wikipedia.org/wiki/Punched_card#IBM_80-column_punched_card_formats_and_character_codes

Holerinth cards can hold an 80x12 matrix of holes, for a total of 960 bits, but cards which have too many holes punched out (sometimes called "lace cards") can be very fragile. For that reason, among others, I believe that the character encodings used with punched cards are designed to mostly avoid having three or more consecutive holes punched in a column, at least with characters that would likely be repeated in consecutive columns. If one wished to encode things to disallow two or more consecutive columns from having holes, each column could select one of 377 characters. If one wished to allow two consecutive holes but disallow three, each column could select one of 1705 characters.

Related

Calculate the number of entries in a Page Table

We have a system that uses 3-level hierarchical page table. Logical address is 32 bit.
We know that the same amount of bits is allocated for each level in the logical address.
The system is byte-addressable.
Physical address is 27 bits, and we have 8192 frames is the physical memory.
I want to calculate the number of entries in each level of the page table.
We have 8192 frames, that is 2^13, so we need 13 bits to represent the frame number.
So 27-13=14 bits for the offset.
That gives us 32-14=18 bits for page number.
We know that we can split it equally, so 6 bits represents each level of the hierarchical page table.
But how many entries are in each level? 2^6? If so - why is that?
Thanks!

Calculating sizes of page table parameters

I am given a system with 64-bit virtual address space. with page size of 2KB.
Also it is given that the physical memory is of the size 16GB.
I need to calculate the following parameters:
number of page entries (number of lines in the page table), how many bits are needed for the page offset, how many bits are needed for the virtual page number (VPN), and how many bits are needed for the physical page number (PPN).
So, first I concluded that the size of the virtual memory is 2^64 bytes, and that means there are 2^53 entries in the page table.
From the size of a page I concluded that 11 bits are needed for the page offset.
From here I'm not so sure.
Since each virtual address is of the size 64 it, then the VPN is of the size 64 - 11 = 53 bits.
Since the physical memory is of the size 2^34 bytes, then a physical address if of 34 bits. Which means the PPN is of the size 34 - 11 = 23 bits.
Are my calculations correct? and also is my thinking correct?
Help would be appreciated
Some of your results are correct. PPN is 23 bits, VPN is 53 bits.
But all the stuff concerning the page tables is wrong.
A page table contains a set of physical page adresses. Hence as a PPN is 23 bits, one needs 4 bytes (the power of 2 above 23) to describe a PP. If pages are 2k bytes, you can store 2^9 PP adresses par page.
As VPN are 53bits, and each table can resolve 9 bits, the translation can be done by 6 consecutive tables.
If you are not familiar with multilevel pages, there are many good tuturials. See for instance https://en.wikipedia.org/wiki/Page_table
What is certain is that the PT size is NOT 2^53!! First because 2^55 is an insane amount of memory (~10^16). And second, because the total number of PP is 2^23, so why use a table 1 billion times larger... (and this is why we use multilevel page tables)

reason for separating memory into banks IN PIC microcontroler

I wonder why Data memory is separated into BANKS in PIC microcontroller family? I've done a lot of search but only thing I could find that it is separated into 4 banks and each of which is 128 bytes long. I could not find the reason behind it. I mean there must be some advantages of partitioning the memory.
The memory location is encoded into the program words. This means that you can often get away with a single program word instead of two (one for the instruction and one for the address)
The downside is that you either need to make the program words 2 bits longer to have a flat memory space, or split the RAM into 4 banks.
The first option is especially impractical if you want to be able to add members to the chip family with 2 or 4 or 8 times the RAM

Cache and memory

First of all, this is not language tag spam, but this question not specific to one language in particulary and I think that this stackexchange site is the most appropriated for my question.
I'm working on cache and memory, trying to understand how it works.
What I don't understand is this sentence (in bold, not in the picture) :
In the MIPS architecture, since words are aligned to multiples of four
bytes, the least significant two bits are ignored when selecting a
word in the block.
So let's say I have this two adresses :
[1........0]10
[1........0]00
^
|
same 30 bits for boths [31-12] for the tag and [11-2] for the index (see figure below)
As I understand the first one will result in a MISS (I assume that the initial cache is empty). So one slot in the cache will be filled with the data located in this memory adress.
Now, we took the second one, since it has the same 30 bits, it will result in a HIT in the cache because we access the same slot (because of the same 10 bits) and the 20 bits of the adress are equals to the 20 bits stored in the Tag field.
So in result, we'll have the data located at the memory [1........0]10 and not [1........0]00 which is wrong !
So I assume this has to do with the sentence I quote above. Can anyone explain me why my reasoning is wrong ?
The cache in figure :
In the MIPS architecture, since words are aligned to multiples of four
bytes, the least significant two bits are ignored when selecting a
word in the block.
It just mean that in memory, my words are aligned like that :
So when selecting a word, I shouldn't care about the two last bits, because I'll load a word.
This two last bits will be useful for the processor when a load byte (lb) instruction will be performed, to correctly shift the data to get the one at the correct byte position.

Memory Units, calculating sizes, help!

I am preparing for a quiz in my computer science class, but I am not sure how to find the correct answers. The questions come in 4 varieties, such as--
Assume the following system:
Auxiliary memory containing 4 gigabytes,
Memory block equivalent to 4 kilobytes,
Word size equivalent to 4 bytes.
How many words are in a block,
expressed as 2^_? (write the
exponent)
What is the number of bits needed to
represent the address of a word in
the auxiliary memory of this system?
What is the number of bits needed to
represent the address of a byte in a
block of this system?
If a file contains 32 megabytes, how
many blocks are contained in the
file, expressed as 2^_?
Any ideas how to find the solutions? The teacher hasn't given us any examples with solutions so I haven't been able to figure out how to do this by working backwards or anything and I haven't found any good resources online.
Any thoughts?
Questions like these basically boil down to working with exponents and knowing how the different pieces fit together. For example, from your sample questions, we would do:
How many words are in a block, expressed as 2^_? (write the exponent)
From your description we know that a word is 4 bytes (2^2 bytes) and that a block is 4 kilobytes (2^12 bytes). To find the number of words in one block we simply divide the size of a block by the size of a word (2^12 / 2^2) which tells us that there are 2^10 words per block.
What is the number of bits needed to represent the address of a word in the auxiliary memory of this system?
This type of question is essentially an extension of the previous one. First you need to find the number of words contained in the memory. And from that you can get the number of bits required to represent a word in the memory. So we are told that memory contains 4 gigabytes (2^32 bytes) and that the word is 4 bytes (2^2 bytes); therefore the number words in memory is 2^32/2^2 = 2^30 words. From this we can deduce that 30 bits are required to represent a word in memory because each bit can represent two locations and we need 2^30 locations.
Since this is tagged as homework I will leave the remaining questions as exercises :)
Work backwards. This is actually pretty simple mathematics. (Ignore the word "auxilliary".)
How much is a kilobyte? How much is 4 kilobytes? Try putting in some numbers in 2^x, say x == 4. How much is 2^4 words? 2^8?
If you have 4GB of memory, what is the highest address? How large numbers can you express with 8 bits? 16 bits? Hint: 4GB is an even power of 2. Which?
This is really the same question as 2, but with different input parameters.
How many kilobytes is a megabyte? Express 32 megabytes in kilobytes. Division will be useful.

Resources