how to train a classifier using video datasets - machine-learning

If I have a video dataset of a specific action , how could I use them to train a classifier that could be used later to classify this action.

The question is very generic. In general, there is no foul proof way of training a classifier that will work for everything. It highly depends on the data you are working with.
Here is the 'generic' pipeline:
extract features from the video
label your features (positive for the action you are looking for; negative otherwise)
split your data into 2 (or 3) sets. One for training, one for testing and the other optionally for validation
train a classifier on the labeled examples (e.g. SVM, Neural Network, Nearest Neighbor ...)
validate the results on the validation data, if that is appropriate for the algorithm
test on data you haven't used for training.
You can start with some machine learning tools here http://www.cs.waikato.ac.nz/ml/weka/
Make sure you never touch the test data for any other purposes than testing
Good luck

Almost 10 years later, here's an updated answer.
Set up a camera and collect raw video data
Save it somewhere in form of single frames. Do this yourself locally or using a cloud bucket or use a service like Sieve API. Helpful repo linked here.
Export from Sieve or cloud bucket to get data labeled. Do this yourself or using some service like Scale Rapid.
Split your dataset into train, test, and validation.
Train a classifier on the labeled samples. Use transfer learning over some existing model and fine-tune just the last few layers.
Run your model over the test set after each training epoch and save the one with the best test set performance.
Evaluate your model at the end using the validation set.
There are many repos that can help you get started: https://github.com/weiaicunzai/awesome-image-classification
The two things that can help you ensure best results include 1. high quality labeled data and 2. a diverse, curated dataset. That's what Sieve can help with!

Related

Supervised learning by creating own labels

Scenario - I have data that does not have labels but I can create a function to label the data based on behavior and deploy the model so I don't have to keep labeling the data. Is this considered machine learning?
Objective: classify accounts with Volume spikes based on high medium low labels to deploy on big data (trillions of lines of data)
Data: the data I have includes the following attributes:
Account, Time, Date, Volume amount.
Method:
Create a new feature column called "spike" and create a pandas function to ID a spike greater than 5. Is this feature engineering?
Next I create my label column and classify it as low medium or high spike.
Next I Train a machine learning classifier and deploy it to label future accounts with similar patterns in big data.
Thoughts on this process? Is this approach correct for Machine learning?
1st question:
If your algorithm takes the decision, that is, put a label in a sample, based on the set of samples that you have, I'd say it's a machine learning algorithm. But if you design a code that takes into account your experience regarding the data, I think it's not an ML method. In brief, ML look at the data to get patterns and insights from them. I don't know why you're doing that, but is it need to be an ML algorithm? Sometimes you can solve the problem in a very simple way, without using ML.
2nd question: I'm afraid not. Select your data attributes (ex: Account, Time, Date, Volume amount), checking their correlations, try to figure out if you have a dominant one, etc. This process is pre ML. The feature engineering will select what are the best features to present to our algorithm in order to perform the classification (in your case)
3rd question: I think it's fair enough to start playing with some ML algorithms, such as KNN, SVM, NNs, Decision Tree, etc.

How do you add new categories and training to a pretrained Inception v3 model in TensorFlow?

I'm trying to utilize a pre-trained model like Inception v3 (trained on the 2012 ImageNet data set) and expand it in several missing categories.
I have TensorFlow built from source with CUDA on Ubuntu 14.04, and the examples like transfer learning on flowers are working great. However, the flowers example strips away the final layer and removes all 1,000 existing categories, which means it can now identify 5 species of flowers, but can no longer identify pandas, for example. https://www.tensorflow.org/versions/r0.8/how_tos/image_retraining/index.html
How can I add the 5 flower categories to the existing 1,000 categories from ImageNet (and add training for those 5 new flower categories) so that I have 1,005 categories that a test image can be classified as? In other words, be able to identify both those pandas and sunflowers?
I understand one option would be to download the entire ImageNet training set and the flowers example set and to train from scratch, but given my current computing power, it would take a very long time, and wouldn't allow me to add, say, 100 more categories down the line.
One idea I had was to set the parameter fine_tune to false when retraining with the 5 flower categories so that the final layer is not stripped: https://github.com/tensorflow/models/blob/master/inception/README.md#how-to-retrain-a-trained-model-on-the-flowers-data , but I'm not sure how to proceed, and not sure if that would even result in a valid model with 1,005 categories. Thanks for your thoughts.
After much learning and working in deep learning professionally for a few years now, here is a more complete answer:
The best way to add categories to an existing models (e.g. Inception trained on the Imagenet LSVRC 1000-class dataset) would be to perform transfer learning on a pre-trained model.
If you are just trying to adapt the model to your own data set (e.g. 100 different kinds of automobiles), simply perform retraining/fine tuning by following the myriad online tutorials for transfer learning, including the official one for Tensorflow.
While the resulting model can potentially have good performance, please keep in mind that the tutorial classifier code is highly un-optimized (perhaps intentionally) and you can increase performance by several times by deploying to production or just improving their code.
However, if you're trying to build a general purpose classifier that includes the default LSVRC data set (1000 categories of everyday images) and expand that to include your own additional categories, you'll need to have access to the existing 1000 LSVRC images and append your own data set to that set. You can download the Imagenet dataset online, but access is getting spotier as time rolls on. In many cases, the images are also highly outdated (check out the images for computers or phones for a trip down memory lane).
Once you have that LSVRC dataset, perform transfer learning as above but including the 1000 default categories along with your own images. For your own images, a minimum of 100 appropriate images per category is generally recommended (the more the better), and you can get better results if you enable distortions (but this will dramatically increase retraining time, especially if you don't have a GPU enabled as the bottleneck files cannot be reused for each distortion; personally I think this is pretty lame and there's no reason why distortions couldn't also be cached as a bottleneck file, but that's a different discussion and can be added to your code manually).
Using these methods and incorporating error analysis, we've trained general purpose classifiers on 4000+ categories to state-of-the-art accuracy and deployed them on tens of millions of images. We've since moved on to proprietary model design to overcome existing model limitations, but transfer learning is a highly legitimate way to get good results and has even made its way to natural language processing via BERT and other designs.
Hopefully, this helps.
Unfortunately, you cannot add categories to an existing graph; you'll basically have to save a checkpoint and train that graph from that checkpoint onward.

Random forest algorithms able to switch data sets

I'm curious as to whether research been done into random forests that combine unsupervised with supervised learning in a way allowing a single algorithm to find patterns in, and work with, multiple different data sets. I have googled every possible way to find research on this, and have come up empty. Can anyone point me in the right direction?
Note: I have already asked this question in the Data Sciences forum, but it's basically a dead forum so I came here.
(also read the comments and will incorporate the content in my answer)
From what I read between the lines is that you want to use Deep networks in a transfer learning setting. However, this would not be based on decision trees.
http://jmlr.csail.mit.edu/proceedings/papers/v27/mesnil12a/mesnil12a.pdf
There are many elements in your question:
1.) Machine learning algorithms, in general, don't care about the source of your data set. So basically you can feed the learning algorithms 20 different data sets and it will use all of them. However, the data should have the same underlying concept (except in the transfer learning case see below). This means: if you combine cats/dogs data with bills data this will not work or make it much harder for the algorithms. At least all input features need to be identical (exceptions exists), e.g, it is hard to combine images with text.
2.) labeled/unlabeled: Two important terms: a data set is a set of data points with a fixed number of dimensions. Datapoint i might be described as {Xi1,....Xin} where each Xi might for example be a pixel. A label Yi is from another domain, e.g., cats and dogs
3.) unsupervised learning data without any labels. (I have the gut feeling that this is not what you want.
4.) semi-supervised learning: The idea is basically that you combine data where you have labels with data without labels. Basically you have a set of images labeled as cats and dogs {Xi1,..,Xin,Yi} and a second set which contains images with cats/dogs but no labels {Xj1,..,Xjn}. The algorithm can use this information to build better classifiers as the unlabeld data provide information on how images look in general.
3.) transfer learning (I think this come closest to what you want). The Idea is that you provide a data set of cats and dogs and learn a classifier. Afterwards you want to train the classifier with images of cats/dogs/hamster. The training does not need to start from scratch but can use the cats/dogs classifier to converge much faster
4.) feature generation / feature construction The idea is that the algoritm learns features like "eyes". This features are used in the next step to learn the classifier. I'm mainly aware of this in the context of deep learning. Where the algoritm learns in the first step concepts like edges and constructs increasingly complex features like faces cats intolerant it can describe things like "the man on the elephant. This combined with transfer learning is probably what you want. However deep learning is based on Neural networks besides a few exceptions.
5.) outlier detection you provide a data set of cats/dogs as known images. When you provide the cats/dogs/hamster classifier. The classifier tells you that it has never seen something like a hamster before.
6.) active learning The idea is that you don't provide labels for all examples (Data points) beforehand, but that the algorithms asks you to label certain data points. This way you need to label much less data.

machine learning in GATE tool

After running the Machine Learner Algorithm (SVM) on training data using GATE tool, I would like to test it on testing data. My question is, should I use the same trained data to be tested, also, how could the model extract the entities from the test data while the test data not annotated with the annotations that have been learnt in the trained data.
I followed the tutorial on this link http://gate.ac.uk/sale/talks/gate-course-may11/track-3/module-11-machine-learning/module-11.pdf but at the end it was a bit confusing when it talks about splitting the dataset into training and testing.
In GATE you have 3 modes of the machine learning PR - for training, evaluation and application.
What happens when you train is that the ML PR is checking the selected annotation (let's say Token), collecting it's features and learning the target class (i.e. Person, Mention or whatever). Using the example docs, the ML PR creates a model which holds values for features and basically "learns" how to classify new Tokens (or sentences, or other).
When testing, you provide the ML PR only the Tokens with all their features. Then the ML PR uses them as input for its model and decides if or what Mention to create. The ML PR actually needs everything that was there in the training corpus, except the label / target class / mention - the decision that should be made.
I think the GATE ML PR ignores the labels when in test mode, so it's not crucial to remove it.
Evaluation is a helpful option, where training and testing are done automatically, the corpus is split and results are presented. What it does is split the corpus in 2, train on one part, apply the model on the other, compare the gold standard to what it labeled. Repeat with different splits.
The usual sequence is to train and evaluate, check results, fix, add features, etc. and when you're happy with the evaluation results, switch to application and run on data that doesn't have labels.
It is crucial that you run the same pre-processing when you're training and testing. For instance if in training you've run a POS tagger and you skip this when testing, the ML PR won't have the "Token.category" feature and will calculate very different results.
Now to your questions :)
NO! Don't use the same data for testing, that is a very common mistake, if you get suspiciously good results, first check if you're doing that.
In the tutorial, when you split the corpus both parts will have all the annotations as before, so the ML PR will have all the features it needed. In real life, you'll have to run some pre-processing first as docs will come without tokens or anything.
Splitting in their case is done very simple - just save all docs to files, split files in two folders, load them as two corpora.
Hope this helps :)

How can I know training data is enough for machine learning

For example: If I want to train a classifier (maybe SVM), how many sample do I need to collect? Is there a measure method for this?
It is not easy to know how many samples you need to collect. However you can follow these steps:
For solving a typical ML problem:
Build a dataset a with a few samples, how many? it will depend on the kind of problem you have, don't spend a lot of time now.
Split your dataset into train, cross, test and build your model.
Now that you've built the ML model, you need to evaluate how good it is. Calculate your test error
If your test error is beneath your expectation, collect new data and repeat steps 1-3 until you hit a test error rate you are comfortable with.
This method will work if your model is not suffering "high bias".
This video from Coursera's Machine Learning course, explains it.
Unfortunately, there is no simple method for this.
The rule of thumb is the bigger, the better, but in practical use, you have to gather the sufficient amount of data. By sufficient I mean covering as big part of modeled space as you consider acceptable.
Also, amount is not everything. The quality of test samples is very important too, i.e. training samples should not contain duplicates.
Personally, when I don't have all possible training data at once, I gather some training data and then train a classifier. Then I classifier quality is not acceptable, I gather more data, etc.
Here is some piece of science about estimating training set quality.
This depends a lot on the nature of the data and the prediction you are trying to make, but as a simple rule to start with, your training data should be roughly 10X the number of your model parameters. For instance, while training a logistic regression with N features, try to start with 10N training instances.
For an empirical derivation of the "rule of 10", see
https://medium.com/#malay.haldar/how-much-training-data-do-you-need-da8ec091e956

Resources