I needed to display tiled world map with small 3D building models on top of it.
I can see two possible approaches here:
Display tiled map with Route-Me or similar (btw what similar tiled map controls you can suggest?). Then place transparent (I don't know if that is possible) OpenGL surface over it and render buildings here.
Display both tiles and buildings using OpenGL.
I don't need any extra features. Just panning tiled map (by touch or by performing selector) and displaying many small buildings (needed to handle tap on buildings) over it.
I don't know what approach is best and easier/faster to produce. I'll be very happy to get some information about how to produce them (especially 2nd one).
If you know some way with less efforts then please let me know.
Approach two is probably the best but your question is very vague, to properly answer this you would need a lot of different requirements some even too specific to answer.
How I would go about producing this approach would be to use OpenGL and setup two different 'world' matrices. One for the 2D tiled map and one for the 3D buildings that would go on top of it. (Yes transparency is possible in OpenGL.)
Make sure you aren't starting out too big for a project! Good luck!
Related
I'm using SceneKit to create a 3D Room for a Swift iOS app.
I'm using multiple boxes and placing it together to create different walls of the room. I want to also add doors and windows to the room for which I need to cut holes into the walls. This looks like a very common scenario but yet I couldn't find any relevant answers out there.
I know there are multiple ways of doing it -
Simplest being, don't cut the box. Place another box with door or wall texture.
But I do want to keep a light source outside of the room and want it to flow into the room through these doors and windows
Create multiple boxes for single wall and put them together to make a geometry
My last resort maybe.
Create custom geometry.
Feels too complicated since it requires me to draw each triangle myself. Not sure?
But what I was actually expecting -
Subtract geometries from geometries?
Library that's already handling these complexities?
Any pointers would be very helpful.
Thanks.
Scene kit offers some awesome potential but it's not a substitute for a 3D modeling program. If you want something much beyond assembling with primitives and extrusion in a plane you should think about constructing your model in a dedicated 3-D package and exporting the model into SceneKit as a .dae file. You might take a look at Blender. It's free and readily available on the net. I suspect it can easily do what you want and the learning curve will be compensated by the higher level functions of a graphics program versus coding.
I think #bpedit described the best approach.
A weak second choice would be to use SCNShape to build your geometry. That still leaves you the problem of constructing a Bezier path that matches your wall layout/topology. That might be a helpful hack in the short term, to save you from an immediate learning curve in modeling software. But I predict you'll still eventually move to a tool like Blender, SketchUp, Cheetah 3D, or Maya.
I want to do something like this but in reverse-- so that the cameras are outside and pointing inward. Let's start with the abstract and get specific:
1) Are there any TOOLS that will do this for me? How close can I get using existing software?
2) Say the nearest tool is a graphics library like OpenCV. I've taken linear algebra and have an undergraduate degree in CS but without any special training in graphics. Where should I go from there?
3) If I really am undergoing a decade-long spiritual quest of a self-teaching+programming exercise to make this happen, are there any papers or other resources that you aware of that might aid me?
I think the demo you linked uses a 360° camera (see the black circle on the bottom) and does not involve stitching in any way.
About your question, are you aware of this work? They don't do stitching either, just blending between different views.
If you use inward views, then the objects you will observe will probably be quite close to the cameras, while standard stitching assumes that objects are far away. Close 3D objects mean high distortion when you change the viewpoint (i.e. parallax & occlusions), which makes it difficult to interpolate between two views. Hence, if you want stitching, then your main problem is to correctly handle parallax effects & occlusions between the views.
In my opinion, the most promising approach would be to do live stereo matching (i.e. dense 3D reconstruction) between the two camera images closest to your current viewpoint, and then interpolate the estimated disparities to generate an expected image. However, it's not likely to run in real-time, as demonstrated in the demo you linked, and the result could be quite ugly...
EDIT
You can also have a look at this paper, which uses a different but interesting approach, however maybe not directly useful in your case since it requires the new viewpoint to be visible in the available images.
I would like some hints, maybe more, on detecting a custom image marker in a real-time video feed. I'm using OpenCV, iPhone and the camera feed.
By custom image marker I'm referring to a predefined image, but it can be any kind of image (not a specific designed marker). For example, it can be a picture of some skyscrapers.
I've already worked with ARTags and understand how they are detected, but how would I detect this custom image and especially find out its position & orientation?
What makes a good custom image to be detected successfully?
Thanks
The most popular markers used in AR are
AR markers (a simple form of QR codes) - those detected by AR tookit & others
QR codes. There are plenty of examples on how to create/detect/read QR.
Dot grids. Similar with the chess grids used in calibration. It seems their detection can be more robust than the classical chess grid. OpenCV has codes related to dot grid detection in the calibration part. Also, the OpenCV codebase offers a good starting point to extract 3D position and orientation.
Chess grids. Similar to dot grids. They were the standard calibration pattern, and some people used them for marker detection of a long time. But they lost their position to dot grids recently, when some people discovered that dots can be detected with better accuracy.
Note:
Grids are symmetrical. I bet you already know that. But that means you will not be able to
recover full orientation data from them. You will get the plane where the grid lies, but nothing more.
Final note:
Code and examples for the first two are easily found on the Internet. They are considered the best by many people. If you decide to use the grid patterns, you have to enjoy some math and image processing work :) And it will take more.
This answer is valid no more since Vuforia is now a paid engine.
I think you should give Vuforia a try. It's a AR engine that can use any image you want as a marker. What makes a good marker for Vuforia is high frequency images.
http://www.qualcomm.com/solutions/augmented-reality
Vuforia is a free to use engine.
In 3d terrain that consists of thousands of cubes (i.e. Minecraft ), what is a way to handle each block in terms of location and rendering? More specifically, I know that drawing a primitive of a cube and world transforming it everywhere in directX 9 is probably a ridiculous way to accomplish this since there are so many performance issues, so I was wondering what a more reasonable method would be.
Should each cube be a mesh that's copied many times, or is their a way to create the appropriate meshes from the data in your vertex buffer?
I found this article that walks through some of the theory behind implementing what I want to implement, but I've never used octrees before so I wasn't able to take too much from the source code. If octrees are indeed the way to go, where is a good starting point to learn about them? Most of my google searches only turned up blog posts about theory with little or no implementation examples.
It seems like using voxels would be useful in doing this, but like with octrees, I'm coming from no experience here, so I don't really know what to study first.
Anyway, thanks for any advice\resources\book names you can spare. I'm sure it's obvious, but I'm still very new to 3d programming, so I appreciate your help.
First off if you're using Minecraft as your reference, think of their use of chunks and relate it to Oct-trees. Minecraft divides up their world into smaller chunks to handle the massive amount information that is needed to be stored so use Oct-trees to organize this data that will be stored. Goz has a very accurate description of how Oct-trees and Quad-trees work, so use his information as a reference.
Another thing to consider is that you don't actually want to draw every cube to the screen as this will eat up your framerate. Use Object Culling to only draw visible cubes to the screen. Again if you think Minecraft; have you ever encountered a glitch where you can see through the blocks and under the world? This is because Minecraft only draws the top layer of blocks. With this many objects on screen, it would be a worthwhile investment to look into Object Culling using both the camera frustum and occlusion query.
For information on using DirectX I would recommend any book by Frank Luna. I own this book myself and it never leaves my side when programming in DirectX. http://www.amazon.com/Introduction-Game-Programming-Direct-9-0c/dp/1598220160/ref=sr_1_3?ie=UTF8&qid=1332478780&sr=8-3
I highly recommend this book as I've learned almost everything I know about DirectX from it.
Upon a Google search I found this link that discusses Occlusion Culling, because Luna doesn't cover occlusion culling, only frustum culling. I hear the Programming Gems series mentioned a lot, but I can't attest to its name personally. http://http.developer.nvidia.com/GPUGems/gpugems_ch29.html
Hope this helps.
Oct-trees are fairly simple, especially axis aligned ones like those in mine craft.
It is basically just a 3D extension of the quad-tree. You may find it easier to learn about Quad-trees first.
To give you a quick overview of a quad-tree; basically you start off with a square. Now imagine placing a much smaller square in that square. If you wish to build a quad tree representing it you first divide the original square into 4 equal sized squares.
Next you check each quadrant and if the smaller square is in that quadrant you split that quadrant into 4 smaller sized squares. Then you check those 4 quadrants choose the quadrant and subdivide. Eventually your smaller square will be wholly contained in one or more quadrants inside quadrants inside quadrants (etc). You have now built your quad tree.
Now if you imagine you are searching for a specific square inside the larger square you can quickly see the bonus of a quad-tree. Instead of searching every possible square in the quad tree (equivalent to searching every pixel in a texture) you can now check the first 4 quadrants to see if they contain it. If one does you can check its 4 sub quadrants and so on until you find the smallest quadrant wholly containing your square (or pixel). This way you end up doing many fewer tests to find your object.
Now an oct-tree is basically the same thing but instead of encoding squares in squares you now encode cubes in cubes. Every cube can be split into 8 smaller octants (and hence the name oct-tree).
Oct-trees have the advantage that by knowing which octant you are starting in you can easily cast rays through the oct-tree to find collisions (as an octant is either full, partially full or it is empty). If an octant is empty then you pass right through it and then check the octant on the other side. If it is partially full you check its sub-octants and so on until you either find a full octant (ie you've hit a solid cube and you render it) or you pass through the octant entirely and hence there is no cube to render. This is how minecraft works (I'm guessing anyway ;)). This is also a good way of quickly rendering voxel data which more people are looking into these days as a possible future rendering mechanism.
Hope thats some help! :)
Oct-trees and quad-trees are useful for culling sections of your geometry to render. Minecraft uses 16x16x16 render blocks to break up the terrain into manageable pieces.
Another technique to consider is instancing. Instancing is where you tell the GPU to render an object multiple times in different locations. It's used for crowd rendering, trees, anything where the geometry is the same, but you have lots of them.
http://msdn.microsoft.com/en-us/library/windows/desktop/bb173349(v=vs.85).aspx
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter03.html
Here is an article where the writer duplicates the minecraft renderer in OpenGL 4. While the code won't apply to your case the techniques (culling cubes that are surrounded, etc) can be applied to a directx renderer.
http://codeflow.org/entries/2010/dec/09/minecraft-like-rendering-experiments-in-opengl-4/
Don't be fooled by the blocky graphics and the low quality textures. Minecraft is an extremely complex renderer and you'll need to come up with ways to handle the sheer number of items involved. For example even a "small" part of the world, say 100x100x100 blocks is 1 million blocks. To push each block to the GPU as a separate mesh would kill your GPU. The Minecraft renderer is far more complex than most first person shooters when you get down to the technology.
I am trying to write a strategy game using XNA 4.0, with a dynamically generating map, and it's really difficult to create all the ground textures, having to distort them individually in photoshop.
So what I want to do is create a flat image, and then apply the distortion programatically to simulate perspective, by moving the corners of the image.
Here is an example done in photoshop:
How can I do that in XNA?
My answer isn't XNA-specific as I've never actually used the library; however the concept should still apply.
In general, the best way to get a good perspective effect is to actually give 3d coordinates and transformations and let DirectX/OpenGL handle the rest. This has great benefits over attempting to do it yourself - specifically, ease of use, performance (much of the work is passed on to your graphics card), and perspective-correct texturing. And nothing's stopping you from doing 3d and 2d in the same scene, if that's a concern. There are numerous tutorials online for getting set up in the third dimension with XNA. I'd suggest heading over to MSDN.