What exactly is modulo 64 - modulo

I haven't found any specific links on the net that explain what exactly modulo 64 is. I'm no programmer but came across this while studying a 3GPP2 CDMA2000 standard.

A modulo is the remainder of division of one number by another. So, a modulo 64 of a number is the remainder of this number divided by 64. For instance, the modulo 64 of 65 is 1, as when you divide 65 by 64, the remainder is 1.

Related

Diff between bit and byte, and exact meaning of byte

This is just basic theoretical question. so I read that a bit consist of 0 or 1. and a byte consists of 8 bits. and in 8 bit we can store 2^8 nos.
similarly in 10 bits we store 2^10 (1024). but then why do we say that 1024 is 1 kilo bytes, its actually 10 bits which just 1.25 byte to be exact.
please share some knowledge on it
just a concrete explanation.
Bit means like there are 8 bits in 1 byte, bit is the smallest unit of any storage or you can say the system and 8 bits sums up to 1 byte.
A bit, short for binary digit, is the smallest unit of measurement used in computers for information storage. A bit is represented by a 1 or a 0 with the value true or false, also known as on or off. A single byte of information, also known as an octet, is made up of eight bits. The size, or amount of information stored, distinguishes a bit from a byte.
A kilobit is 1,000 bits, but it is designated as 1024 bits in the binary system due to the amount of space required to store a kilobit using common operating systems and storage schemes. Most people, however, think of kilo as referring to 1,000 in order to remember what a kilobit is. A kilobyte then, would be 1,000 bytes.

HOW does a 8 bit processor interpret the 2 bytes of a 16 bit number to be a single piece of info?

Assume the 16 bit no. to be 256.
So,
byte 1 = Some binary no.
byte 2 = Some binary no.
But byte 1 also represents a 8 bit no.(Which could be an independent decimal number) and so does byte 2..
So how does the processor know that bytes 1,2 represent a single no. 256 and not two separate numbers
The processor would need to have another long type for that. I guess you could implement a software equivalent, but for the processor, these two bytes would still have individual values.
The processor could also have a special integer representation and machine instructions that handle these numbers. For example, most modern machines nowadays use twos-complement integers to represent negative numbers. In twos-complement, the most significant bit is used to differentiate negative numbers. So a twos-complement 8-bit integer can have a range of -128 (1000 0000) to 127 (0111 111).
You could easily have the most significant bit mean something else, so for example, when MSB is 0 we have integers from 0 (0000 0000) to 127 (0111 1111); when MSB is 1 we have integers from 256 (1000 0000) to 256 + 127 (1111 1111). Whether this is efficient or good architecture is another history.

Swift Float (or Double) decrease by 0.1, strange value instead of 0 [duplicate]

Why do some numbers lose accuracy when stored as floating point numbers?
For example, the decimal number 9.2 can be expressed exactly as a ratio of two decimal integers (92/10), both of which can be expressed exactly in binary (0b1011100/0b1010). However, the same ratio stored as a floating point number is never exactly equal to 9.2:
32-bit "single precision" float: 9.19999980926513671875
64-bit "double precision" float: 9.199999999999999289457264239899814128875732421875
How can such an apparently simple number be "too big" to express in 64 bits of memory?
In most programming languages, floating point numbers are represented a lot like scientific notation: with an exponent and a mantissa (also called the significand). A very simple number, say 9.2, is actually this fraction:
5179139571476070 * 2 -49
Where the exponent is -49 and the mantissa is 5179139571476070. The reason it is impossible to represent some decimal numbers this way is that both the exponent and the mantissa must be integers. In other words, all floats must be an integer multiplied by an integer power of 2.
9.2 may be simply 92/10, but 10 cannot be expressed as 2n if n is limited to integer values.
Seeing the Data
First, a few functions to see the components that make a 32- and 64-bit float. Gloss over these if you only care about the output (example in Python):
def float_to_bin_parts(number, bits=64):
if bits == 32: # single precision
int_pack = 'I'
float_pack = 'f'
exponent_bits = 8
mantissa_bits = 23
exponent_bias = 127
elif bits == 64: # double precision. all python floats are this
int_pack = 'Q'
float_pack = 'd'
exponent_bits = 11
mantissa_bits = 52
exponent_bias = 1023
else:
raise ValueError, 'bits argument must be 32 or 64'
bin_iter = iter(bin(struct.unpack(int_pack, struct.pack(float_pack, number))[0])[2:].rjust(bits, '0'))
return [''.join(islice(bin_iter, x)) for x in (1, exponent_bits, mantissa_bits)]
There's a lot of complexity behind that function, and it'd be quite the tangent to explain, but if you're interested, the important resource for our purposes is the struct module.
Python's float is a 64-bit, double-precision number. In other languages such as C, C++, Java and C#, double-precision has a separate type double, which is often implemented as 64 bits.
When we call that function with our example, 9.2, here's what we get:
>>> float_to_bin_parts(9.2)
['0', '10000000010', '0010011001100110011001100110011001100110011001100110']
Interpreting the Data
You'll see I've split the return value into three components. These components are:
Sign
Exponent
Mantissa (also called Significand, or Fraction)
Sign
The sign is stored in the first component as a single bit. It's easy to explain: 0 means the float is a positive number; 1 means it's negative. Because 9.2 is positive, our sign value is 0.
Exponent
The exponent is stored in the middle component as 11 bits. In our case, 0b10000000010. In decimal, that represents the value 1026. A quirk of this component is that you must subtract a number equal to 2(# of bits) - 1 - 1 to get the true exponent; in our case, that means subtracting 0b1111111111 (decimal number 1023) to get the true exponent, 0b00000000011 (decimal number 3).
Mantissa
The mantissa is stored in the third component as 52 bits. However, there's a quirk to this component as well. To understand this quirk, consider a number in scientific notation, like this:
6.0221413x1023
The mantissa would be the 6.0221413. Recall that the mantissa in scientific notation always begins with a single non-zero digit. The same holds true for binary, except that binary only has two digits: 0 and 1. So the binary mantissa always starts with 1! When a float is stored, the 1 at the front of the binary mantissa is omitted to save space; we have to place it back at the front of our third element to get the true mantissa:
1.0010011001100110011001100110011001100110011001100110
This involves more than just a simple addition, because the bits stored in our third component actually represent the fractional part of the mantissa, to the right of the radix point.
When dealing with decimal numbers, we "move the decimal point" by multiplying or dividing by powers of 10. In binary, we can do the same thing by multiplying or dividing by powers of 2. Since our third element has 52 bits, we divide it by 252 to move it 52 places to the right:
0.0010011001100110011001100110011001100110011001100110
In decimal notation, that's the same as dividing 675539944105574 by 4503599627370496 to get 0.1499999999999999. (This is one example of a ratio that can be expressed exactly in binary, but only approximately in decimal; for more detail, see: 675539944105574 / 4503599627370496.)
Now that we've transformed the third component into a fractional number, adding 1 gives the true mantissa.
Recapping the Components
Sign (first component): 0 for positive, 1 for negative
Exponent (middle component): Subtract 2(# of bits) - 1 - 1 to get the true exponent
Mantissa (last component): Divide by 2(# of bits) and add 1 to get the true mantissa
Calculating the Number
Putting all three parts together, we're given this binary number:
1.0010011001100110011001100110011001100110011001100110 x 1011
Which we can then convert from binary to decimal:
1.1499999999999999 x 23 (inexact!)
And multiply to reveal the final representation of the number we started with (9.2) after being stored as a floating point value:
9.1999999999999993
Representing as a Fraction
9.2
Now that we've built the number, it's possible to reconstruct it into a simple fraction:
1.0010011001100110011001100110011001100110011001100110 x 1011
Shift mantissa to a whole number:
10010011001100110011001100110011001100110011001100110 x 1011-110100
Convert to decimal:
5179139571476070 x 23-52
Subtract the exponent:
5179139571476070 x 2-49
Turn negative exponent into division:
5179139571476070 / 249
Multiply exponent:
5179139571476070 / 562949953421312
Which equals:
9.1999999999999993
9.5
>>> float_to_bin_parts(9.5)
['0', '10000000010', '0011000000000000000000000000000000000000000000000000']
Already you can see the mantissa is only 4 digits followed by a whole lot of zeroes. But let's go through the paces.
Assemble the binary scientific notation:
1.0011 x 1011
Shift the decimal point:
10011 x 1011-100
Subtract the exponent:
10011 x 10-1
Binary to decimal:
19 x 2-1
Negative exponent to division:
19 / 21
Multiply exponent:
19 / 2
Equals:
9.5
Further reading
The Floating-Point Guide: What Every Programmer Should Know About Floating-Point Arithmetic, or, Why don’t my numbers add up? (floating-point-gui.de)
What Every Computer Scientist Should Know About Floating-Point Arithmetic (Goldberg 1991)
IEEE Double-precision floating-point format (Wikipedia)
Floating Point Arithmetic: Issues and Limitations (docs.python.org)
Floating Point Binary
This isn't a full answer (mhlester already covered a lot of good ground I won't duplicate), but I would like to stress how much the representation of a number depends on the base you are working in.
Consider the fraction 2/3
In good-ol' base 10, we typically write it out as something like
0.666...
0.666
0.667
When we look at those representations, we tend to associate each of them with the fraction 2/3, even though only the first representation is mathematically equal to the fraction. The second and third representations/approximations have an error on the order of 0.001, which is actually much worse than the error between 9.2 and 9.1999999999999993. In fact, the second representation isn't even rounded correctly! Nevertheless, we don't have a problem with 0.666 as an approximation of the number 2/3, so we shouldn't really have a problem with how 9.2 is approximated in most programs. (Yes, in some programs it matters.)
Number bases
So here's where number bases are crucial. If we were trying to represent 2/3 in base 3, then
(2/3)10 = 0.23
In other words, we have an exact, finite representation for the same number by switching bases! The take-away is that even though you can convert any number to any base, all rational numbers have exact finite representations in some bases but not in others.
To drive this point home, let's look at 1/2. It might surprise you that even though this perfectly simple number has an exact representation in base 10 and 2, it requires a repeating representation in base 3.
(1/2)10 = 0.510 = 0.12 = 0.1111...3
Why are floating point numbers inaccurate?
Because often-times, they are approximating rationals that cannot be represented finitely in base 2 (the digits repeat), and in general they are approximating real (possibly irrational) numbers which may not be representable in finitely many digits in any base.
While all of the other answers are good there is still one thing missing:
It is impossible to represent irrational numbers (e.g. π, sqrt(2), log(3), etc.) precisely!
And that actually is why they are called irrational. No amount of bit storage in the world would be enough to hold even one of them. Only symbolic arithmetic is able to preserve their precision.
Although if you would limit your math needs to rational numbers only the problem of precision becomes manageable. You would need to store a pair of (possibly very big) integers a and b to hold the number represented by the fraction a/b. All your arithmetic would have to be done on fractions just like in highschool math (e.g. a/b * c/d = ac/bd).
But of course you would still run into the same kind of trouble when pi, sqrt, log, sin, etc. are involved.
TL;DR
For hardware accelerated arithmetic only a limited amount of rational numbers can be represented. Every not-representable number is approximated. Some numbers (i.e. irrational) can never be represented no matter the system.
There are infinitely many real numbers (so many that you can't enumerate them), and there are infinitely many rational numbers (it is possible to enumerate them).
The floating-point representation is a finite one (like anything in a computer) so unavoidably many many many numbers are impossible to represent. In particular, 64 bits only allow you to distinguish among only 18,446,744,073,709,551,616 different values (which is nothing compared to infinity). With the standard convention, 9.2 is not one of them. Those that can are of the form m.2^e for some integers m and e.
You might come up with a different numeration system, 10 based for instance, where 9.2 would have an exact representation. But other numbers, say 1/3, would still be impossible to represent.
Also note that double-precision floating-points numbers are extremely accurate. They can represent any number in a very wide range with as much as 15 exact digits. For daily life computations, 4 or 5 digits are more than enough. You will never really need those 15, unless you want to count every millisecond of your lifetime.
Why can we not represent 9.2 in binary floating point?
Floating point numbers are (simplifying slightly) a positional numbering system with a restricted number of digits and a movable radix point.
A fraction can only be expressed exactly using a finite number of digits in a positional numbering system if the prime factors of the denominator (when the fraction is expressed in it's lowest terms) are factors of the base.
The prime factors of 10 are 5 and 2, so in base 10 we can represent any fraction of the form a/(2b5c).
On the other hand the only prime factor of 2 is 2, so in base 2 we can only represent fractions of the form a/(2b)
Why do computers use this representation?
Because it's a simple format to work with and it is sufficiently accurate for most purposes. Basically the same reason scientists use "scientific notation" and round their results to a reasonable number of digits at each step.
It would certainly be possible to define a fraction format, with (for example) a 32-bit numerator and a 32-bit denominator. It would be able to represent numbers that IEEE double precision floating point could not, but equally there would be many numbers that can be represented in double precision floating point that could not be represented in such a fixed-size fraction format.
However the big problem is that such a format is a pain to do calculations on. For two reasons.
If you want to have exactly one representation of each number then after each calculation you need to reduce the fraction to it's lowest terms. That means that for every operation you basically need to do a greatest common divisor calculation.
If after your calculation you end up with an unrepresentable result because the numerator or denominator you need to find the closest representable result. This is non-trivil.
Some Languages do offer fraction types, but usually they do it in combination with arbitary precision, this avoids needing to worry about approximating fractions but it creates it's own problem, when a number passes through a large number of calculation steps the size of the denominator and hence the storage needed for the fraction can explode.
Some languages also offer decimal floating point types, these are mainly used in scenarios where it is imporant that the results the computer gets match pre-existing rounding rules that were written with humans in mind (chiefly financial calculations). These are slightly more difficult to work with than binary floating point, but the biggest problem is that most computers don't offer hardware support for them.

Hardware implementation for integer data processing

I am currently trying to implement a data path which processes an image data expressed in gray scale between unsigned integer 0 - 255. (Just for your information, my goal is to implement a Discrete Wavelet Transform in FPGA)
During the data processing, intermediate values will have negative numbers as well. As an example process, one of the calculation is
result = 48 - floor((66+39)/2)
The floor function is used to guarantee the integer data processing. For the above case, the result is -4, which is a number out of range between 0~255.
Having mentioned above case, I have a series of basic questions.
To deal with the negative intermediate numbers, do I need to represent all the data as 'equivalent unsigned number' in 2's complement for the hardware design? e.g. -4 d = 1111 1100 b.
If I represent the data as 2's complement for the signed numbers, will I need 9 bits opposed to 8 bits? Or, how many bits will I need to process the data properly? (With 8 bits, I cannot represent any number above 128 in 2's complement.)
How does the negative number division works if I use bit wise shifting? If I want to divide the result, -4, with 4, by shifting it to right by 2 bits, the result becomes 63 in decimal, 0011 1111 in binary, instead of -1. How can I resolve this problem?
Any help would be appreciated!
If you can choose to use VHDL, then you can use the fixed point library to represent your numbers and choose your rounding mode, as well as allowing bit extensions etc.
In Verilog, well, I'd think twice. I'm not a Verilogger, but the arithmetic rules for mixing signed and unsigned datatypes seem fraught with foot-shooting opportunities.
Another option to consider might be MyHDL as that gives you a very powerful verification environment and allows you to spit out VHDL or Verilog at the back end as you choose.

Efficient way to create a bit mask from multiple numbers possibly using SSE/SSE2/SSE3/SSE4 instructions

Suppose I have 16 ascii characters (hence 16 8 bit numbers) in a 128 bit variable/register. I want to create a bit mask in which those bits will be high whose bit positions (indexes) are represented by those 16 characters.
For example, if the string formed from those 16 characters is "CAD...", in the bit mask 67th bit, 65th bit, 68th bit and so on should be 1. The rest of the bits should be 0. What is the efficient way to do it specially using SIMD instructions?
I know that one of the technique is addition like this: 2^(67-1)+2^(65-1)+2^(68-1)+...
But this will require a large number of operations. I want to do it in one/two operations/instructions if possible.
Please let me know a solution.
SSE4.2 contains one instruction, that performs almost what you want: PCMPISTRM with immediate operand 0. One of its operands should contain your ASCII characters, other - a constant vector with values like 32, 33, ... 47. You get the result in 16 least significant bits of XMM0. Since you need 128 bits, this instruction should be executed 8 times with different constant vectors (6 times if you need only printable ASCII characters). After each PCMPISTRM, use bitwise OR to accumulate the result in some XMM register.
There are 2 disadvantages of this method: (1) you need to read the Intel's architectures software developer's manual to understand PCMPISTRM's details because that's probably the most complicated SSE instruction ever, and (2) this instruction is pretty slow (throughput of 1/2 on Nehalem, 1/3 on Sandy Bridge, 1/4 on Bulldozer), so you'll hardly get any significant speed improvement over 'brute force' method.

Resources