How to properly draw sine wave? - ios

I need to draw sine wave (user chooses the frequency). My current approach is drawing lines between calculated points (point's that of course correspond to the sine wave's values). This works, but unfortunately only for lower frequencies. I think that the problem is that my sampling frequency (scale between my screen's coordinates and 1 unit) is about 50, so I can correctly draw sine wave with frequencies up to 25Hz (as per Nyquist–Shannon sampling theorem).
Here are some screenshots so you can see what I am talking about:
http://imgur.com/a/pL2WP
So instead this incorrect graphs, when the frequency is too high, I would like to get something like this:

Related

How does image digitalization differ from sound digitalization (PCM)?

I am trying to understand digitalization of sound and images.
As far as I know, they both need to convert analog signal to digital signal. Both should be using sampling and quantization.
Sound: We have amplitudes on axis y and time on axis x. What is on axis x and y during image digitalization?
What is kind of standard of sample rate for image digitalization? It is used 44kHz for CDs (sound digitalization). How exactly is used sample rate for images?
Quantization: Sound - we use bit-depth - which means levels of amplitude - Image: using bit-depth also, but it means how many intesities are we able to recognize? (is it true?)
What are other differences between sound and image digitalization?
Acquisition of images can be summarized as a spatial sampling and conversion/quantization steps. The spatial sampling on (x,y) is due to the pixel size. The data (on the third axis, z) is the number of electrons generated by photoelectric effect on the chip. These electrons are converted to ADU (analog digital unit) and then to bits. What is quantized is the light intensity in level of greys, for example data on 8 bits would give 2^8 = 256 levels of gray.
An image loses information both due to the spatial sampling (resolution) and the intensity quantization (levels of gray).
Unless you are talking about videos, images won't have sampling in units of Hz (1/time) but in 1/distance. What is important is to verify the Shannon-Nyquist theorem to avoid aliasing. The spatial frequencies you are able to get depend directly on the optical design. The pixel size must be chosen respectively to this design to avoid aliasing.
EDIT: On the example below I plotted a sine function (white/black stripes). On the left part the signal is correctly sampled, on the right it is undersampled by a factor of 4. It is the same signal, but due to bigger pixels (smaller sampling) you get aliasing of your data. Here the stripes are horizontal, but you also have the same effect for vertical ones.
There is no common standard for the spatial axis for image sampling. A 20 megapixel sensor or camera will produce images at a completely different spatial resolution in pixels per mm, or pixels per degree angle of view than a 2 megapixel sensor or camera. These images will typically be rescaled to yet another non-common-standard resolution for viewing (72 ppi, 300 ppi, "Retina", SD/HDTV, CCIR-601, "4k", etc.)
For audio, 48k is starting to become more common than 44.1ksps. (on iPhones, etc.)
("a nice thing about standards is that there are so many of them")
Amplitude scaling in raw format also has no single standard. When converted or requantized to storage format, 8-bit, 10-bit, and 12-bit quantizations are the most common for RGB color separations. (JPEG, PNG, etc. formats)
Channel formats are different between audio and image.
X, Y, where X is time and Y is amplitude is only good for mono audio. Stereo usually needs T,L,R for time, left, and right channels. Images are often in X,Y,R,G,B, or 5 dimensional tensors, where X,Y are spatial location coordinates, and RGB are color intensities at that location. The image intensities can be somewhat related (depending on gamma corrections, etc.) to the number of incident photons per shutter duration in certain visible EM frequency ranges per incident solid angle to some lens.
A low-pass filter for audio, and a Bayer filter for images, are commonly used to make the signal closer to bandlimited so it can be sampled with less aliasing noise/artifacts.

Strange FFT spectrum from a near perfect sinusoid

I have retrieved some signal in my Abaqus simulation for verification purpose. The true signal shall be a perfect sinusoid at 300kHz and I performed fft on the sampled signal using scipy.fftpack.fft.
But I got a strange spectrum as shown below (sorry that I am too lazy to scale the x-axis of the spectrum to the correct frequency). In the same figure, I sliced the signal into pieces and plotted in the time domain. I also repeated the same process for a pure sine wave.
This totally surprises me. As indicated below in the code, sampling frequency is 16.66x of the frequency of the signal. At the moment, I think it is due to the very little error in the sampling period. In theory, Abaqus shall sample it in a regular time interval. As you can see, there is some little error so that the dots in my signal appear to be thicker than the perfect signal. But does such a small error give a striking difference in the frequency spectrum? Otherwise, why is the frequency spectrum like that?
FYI1: This is the magnified fft spectrum of my signal:
FYI2: This is the python code that was used to produce the above figures
def myfft(x, k, label):
plt.plot(np.abs(fft(x))[0:k], label = label)
plt.legend()
plt.subplot(4,1,1)
for i in range(149800//200):
plt.plot(mysignal[200*i:200*(i+1)], 'bo')
plt.subplot(4,1,2)
myfft(mysignal,150000//2, 'fft of my signal')
plt.subplot(4,1,3)
[Fs,f, sample] = [5e6,300000, 150000]
x = np.arange(sample)
y = np.sin(2 * np.pi * f * x / Fs)
for i in range(149800//200):
plt.plot(y[200*i:200*(i+1)], 'bo')
plt.subplot(4,1,4)
myfft(y,150000//2, 'fft of a perfect signal')
plt.subplots_adjust(top = 2, right = 2)
FYI3: Here is my signal in .npy and .txt format. The signal is pretty long. It has 150001 points. The .txt one is the raw file from Abaqus. The .npy format is what I used to produce the above plot - (1) the time vector is removed and (2) the data is in half precision and normalized.
Any standard FFT algorithm you use operates on the assumption that the signal you provide is uniformly sampled. Uniform in this context means equally spaced in time. Your signal is clearly not uniformly sampled, therefore the FFT does not "see" a perfect sine but a distorted version. As a consequence you see all these additional spectral components the FFT computes to map your distorted signal to the frequency domain. You have two options now. Resample your signal i.e. it is uniformly sampled and use your off the shelf FFT or take a non-uniform FFT to get your spectrum. Here is one library you could use to calculate your non-uniform FFT.

Measuring object size using webcam

I need to calculate distance between two points using a webcam. Now the catch is I don't need it to be any way related to actual measurements in cm or whatever. What I want is to use different webcams of different resolutions and they should all give the same measurement. I'll explain.
Suppose I am viewing a square shape using a webcam of 640x480 and it measures as one unit. I then view the same object from the same positions using a webcam of 1024x768 and it should still measure as 1 unit. How do I do this?
You didn't mentioned about the process by which you are measuring the dimensions of the object. I'm gonna assume you are measuring by using a single camera. You can take this method as a reference & this can be applied to any methodology.
Here are the steps to measure the size of object:
How will you measure length of a line drawn in this picture?
You need a ruler as a reference. To make this ruler you have to know the real world ruler size which will be in pixels in our case.
Now make a graph. I'm gonna take a unit line as a reference graph. I'm taking centimeter scale as reference.
Place this graph in front of the camera & detect the Two red dots. Now calculate the number of pixels between this two points ref. Lets assume the distance is 1000 pixels. So 1 cm is taking 1000 pixels. So 1 pixel is equal to 0.1 cm & take this as a Reference_pixels_count.
Repeat this step 4 for all the resolutions & find the Reference_pixels_count for that Resolution.
Now place an object & get the size of image.find corners & cycle through each corner and find the distance between each corner. Multiply this distance with the Reference_pixels_count to get the actual dimension of the object.
NOTE: This method can work only for flat object with negligible depth change.

Simple way to check if an image bitmap is blur

I am looking for a "very" simple way to check if an image bitmap is blur. I do not need accurate and complicate algorithm which involves fft, wavelet, etc. Just a very simple idea even if it is not accurate.
I've thought to compute the average euclidian distance between pixel (x,y) and pixel (x+1,y) considering their RGB components and then using a threshold but it works very bad. Any other idea?
Don't calculate the average differences between adjacent pixels.
Even when a photograph is perfectly in focus, it can still contain large areas of uniform colour, like the sky for example. These will push down the average difference and mask the details you're interested in. What you really want to find is the maximum difference value.
Also, to speed things up, I wouldn't bother checking every pixel in the image. You should get reasonable results by checking along a grid of horizontal and vertical lines spaced, say, 10 pixels apart.
Here are the results of some tests with PHP's GD graphics functions using an image from Wikimedia Commons (Bokeh_Ipomea.jpg). The Sharpness values are simply the maximum pixel difference values as a percentage of 255 (I only looked in the green channel; you should probably convert to greyscale first). The numbers underneath show how long it took to process the image.
If you want them, here are the source images I used:
original
slightly blurred
blurred
Update:
There's a problem with this algorithm in that it relies on the image having a fairly high level of contrast as well as sharp focused edges. It can be improved by finding the maximum pixel difference (maxdiff), and finding the overall range of pixel values in a small area centred on this location (range). The sharpness is then calculated as follows:
sharpness = (maxdiff / (offset + range)) * (1.0 + offset / 255) * 100%
where offset is a parameter that reduces the effects of very small edges so that background noise does not affect the results significantly. (I used a value of 15.)
This produces fairly good results. Anything with a sharpness of less than 40% is probably out of focus. Here's are some examples (the locations of the maximum pixel difference and the 9×9 local search areas are also shown for reference):
(source)
(source)
(source)
(source)
The results still aren't perfect, though. Subjects that are inherently blurry will always result in a low sharpness value:
(source)
Bokeh effects can produce sharp edges from point sources of light, even when they are completely out of focus:
(source)
You commented that you want to be able to reject user-submitted photos that are out of focus. Since this technique isn't perfect, I would suggest that you instead notify the user if an image appears blurry instead of rejecting it altogether.
I suppose that, philosophically speaking, all natural images are blurry...How blurry and to which amount, is something that depends upon your application. Broadly speaking, the blurriness or sharpness of images can be measured in various ways. As a first easy attempt I would check for the energy of the image, defined as the normalised summation of the squared pixel values:
1 2
E = --- Σ I, where I the image and N the number of pixels (defined for grayscale)
N
First you may apply a Laplacian of Gaussian (LoG) filter to detect the "energetic" areas of the image and then check the energy. The blurry image should show considerably lower energy.
See an example in MATLAB using a typical grayscale lena image:
This is the original image
This is the blurry image, blurred with gaussian noise
This is the LoG image of the original
And this is the LoG image of the blurry one
If you just compute the energy of the two LoG images you get:
E = 1265 E = 88
or bl
which is a huge amount of difference...
Then you just have to select a threshold to judge which amount of energy is good for your application...
calculate the average L1-distance of adjacent pixels:
N1=1/(2*N_pixel) * sum( abs(p(x,y)-p(x-1,y)) + abs(p(x,y)-p(x,y-1)) )
then the average L2 distance:
N2= 1/(2*N_pixel) * sum( (p(x,y)-p(x-1,y))^2 + (p(x,y)-p(x,y-1))^2 )
then the ratio N2 / (N1*N1) is a measure of blurriness. This is for grayscale images, for color you do this for each channel separately.

opencv SimpleBlobDetector filterByInertia meaning?

I don't understand what filterByInertia means... neither do I understand the documentation's little description :
By ratio of the minimum inertia to maximum inertia. Extracted blobs will have this ratio between minInertiaRatio (inclusive) and maxInertiaRatio (exclusive).
. The above image pretty much explains what the different filter parameters do. SimpleBlobDetector is happiest when it sees a circular blob, and different filters filter out different kids of deviations from the circular shape.
Inertia measures the the ratio of the minor and major axes of a blob.
The figure also shows the difference between circularity and inertia. I have copied this figure from Blob Detection Tutorial at LearnOpenCV.com
I've been wondering this for a while also; the OpenCV documentation isn't very helpful when it comes to blob detection.
Based on the descriptions of other blob analyzers, the inertia of a blob is "the inertial resistance of the blob to rotation about its principal axes". It depends on how the mass of the blob (I guess in this case the area) is distributed throughout the blob's shape.
There's a lot of mathy stuff involved -- most of which I don't remember how to do -- but the result at the bottom of this page on the properties of binary images sums it up fairly well (blob detection is done by converting the input image to a series of binary images):
The ratio gives us some idea of how rounded the object is. This ratio will be 0 for a line and 1 for a circle.
So basically, by specifying minInertiaRatio and maxInertiaRatio you can filter the blobs based on how elongated they are. An inertia ratio of 0 will yield elongated blobs (closer to lines) and an inertia ratio of 1 will yield blobs where the area is more concentrated toward the center (closer to circles).
Here's a physical intepretation:
If you cut the blob out on a piece of card, you could find its center of gravity, and then attach an axle to it, crossing this point (the axle being parallel to the card), and then spin it, and measure its moment of inertia. Depending on the shape, you may get different values according to how you place the axle. For an ellipse, you get the lowest value when the axle is attached along the long (major) axis, and the largest when the the axle is placed along the short axis (so that more of the card is far from the axle). For a circle the inertia is always the same, of course.
If there are different values, there will be always be a 'max' inertia at some orientation, and a 'min' with the axle placed 90 degrees away from the 'max'. The inertia ratio is simply the ratio between these intertias, min/max.
For shapes which are not ellipses, the metric tells you whether the overall shape is roughly elongated, or roughly the same size in all directions; without caring in particular about an uneven boundary or cuts and concavities (which roundness and convexity look at).
Mathematically, it does something like this:
Consider the set of points within the blob to be a population of (x,y) samples
Find the mean of these, and the covariance matrix x vs. y
Find the two eigenvalues of the covariance matrix (which are the same as its singular values, due to the nature of this matrix)
The inertia ratio is the ratio between these two values, smallest/largest.

Resources