Reportviewer layout issue - asp.net-mvc

I have a report viewer in with two different datasets and i have two different tables each table gets information from a dataset.
I would like the layout to be as the following for an example:
Dataset 1 (Class)
Dataset 2 (Subclass)
My current reports returns all classes (from dataset 1) then shows the subclasses (from dataset 2) Is there a way in which i can show data from the two different datasets together?
I have two different Lists each referring to a dataset and within them are tables with the appropriate tables.

Took the advice of others and combined both stored procedures into one and in the report viewer i used the filters feature to show different data in different tables.

Related

Reclassify data using filters

My goal is to include or exclude dimensional data, from a calculation that creates a category on that dimension, in this example, Customer Name. I have achieve the inclusion/exclusion using Parameters, but they only accept single values. That means I need to create several parameters to achieve a selection of 10 items or more.
To explain the case in full, I'm using SuperStore sample dataset on Tableau Desktop 2021.1, I have created the following calculation
Top 10 Customers
IF
{fixed [Customer Name]:sum([Sales])}>10000
then
[Customer Name]
ELSE
"Other"
END
That renders the following visual
How can I move Bart Watters and Denny Joy to Other, without filtering the data? The idea is providing the user the ability to classify - instead of hard coding the selection into the calculation.

Model source informations to maximize query performance

I am wondering about the best way (in terms of performance) to model data sources in Neo4j.
Consider the following scenario:
We are joining different datasets about the music domain in one graph. The data can range from different artists and styles to sales information. Important is to store the source of this information. E.g. do we have the data from a public source like DBpedia or some other private sources.
To be able to run queries only on certain datasets we have to include the source to each Node (and in the optimal way to each Relation). Of course one Node or Relation could have multiple sources.
There are three straight forward solutions:
Add a source property to each Node and Relation; index this property and use it in a cypher query. E.g.:
MATCH(n:Artist) WHERE n.source='DBpedia' return n
Add the source as Label to each Node and a Type to each Relation (can we have multiple types on one Relation?). E.g.:
CREATE (n:Artist:DBpediaSource:CustomerSource)
Create a separate Node for each Source and link all other Nodes to the corresponding Source Node. E.g.:
MATCH (n:Artist)-[:HASSOURCE]-(:DBpediaSource) return n
Of course for those examples the solution does not matter in terms of performance. However using the source in more complex queries and on a bigger graph (lets say with a few million Nodes and Relations) the way we model this challenge will have a significant influence on the performance.
One more complex example where the sources are also needed is the generation of a "sub graph".
We want to extract all Nodes and Relations from one or multiple Sources and for example export this to a new Neo4j instance, or restrict some graph algorithms such as PageRang to this "sub graph" without creating a separate Neo4j instance.
Does anyone in the community has experience with such a case? What is the best way to model this in terms of performance? Are there maybe other solutions?
Thanks for your help.

Integrate multiple same structure datasets in one database

I have 8 different datasets with the same structure. I am using Neo4j and need to query all of them at different points on the website I am developing. What would be the approaches at storing the datasets in one database?
One idea that comes to my mind is to supply for each node an additional property that would distinguish nodes of one dataset from nodes of the other ones. But that seems too repetitive and wrong for me. The other idea is just to create 8 databases and query them separately but how could I do that? Running each one in its own port seems crazy.
Any suggestions would be greatly appreciated.
If your datasets are in a tree structure, you could add a different root node to each of them that you could use for reference, similar to GraphAware TimeTree. Another option (better than a property, I think) would be to differentiate each dataset by adding a specific label to nodes from that dataset (i.e. all nodes from "dataset A" get a :DataSetA label)
I imagine that the specific structure of your dataset may yield other options. For example, if you always begin traversals of the dataset from a few set locations, you only need to be able to determine which dataset the entry points are a part of, because once entered, all traversals would be made within the same dataset <-- if that makes sense.

Keywords cooccurence using OLAP

I have a large set of documents. Each document contains multiple keywords. I would like to create an OLAP cube that calculate the co-occurrence of keywords in this set. is it possible to perform such solution (using olap cube). in this case what would be the attributs of the fact table, the dimensions , the measure and the aggregation function. Also what tool do you suggest.
An example of document : (in JSON form) actually form doesn't matter
example of document

Dimension with two surrogate keys or two seperate dimensions?

im looking for some guidance for dimensional modeling.
I'm looking at some search data that is stored in a database in a star schema. There is one dimension for queries and one dimension for landing pages. Both dimensions have a surrogate key that are stored in the fact table as foreign keys.
The fact table has about 100 million rows and the dimensions each have about 100k rows.
As the joins of these tables are taking very long lately i'm wondering if it would be a good idea to combine the two dimensions into one so it only joins to one table. The two dimensions are M:N so the new dimension would be very huge.
Thanks!!
There isn't a "right" answer for your question without knowing more about your data (like do you have more dimensions in your fact table? how many combinations of Queries and Landing pages do you have?), but few comments:
You current design (for what I can understand from here) is not bad, you have a lot of data, you have to deal with it, but combine two dimensions with 100K elements to avoid a join doesn't seems right to me
Try to optimize your queries, build indexes if you don't have them, parallelize your queries (if your db engine allows you to do so), try to avoid like in your where if possible, last resource think about more hardware or a different database engine.
If you usually query using only one of these dimensions maybe you can think about aggregated tables to reduce the number of rows, you will use more space but your query will have a single join and a smaller fact table
Can query be child of landing page? (i.e. stackoverflow.com is parent of queries like "Guru Meditation error message" and "stackcareers.com" is parent of "pool boy for datalake jobs") Of course you will end with the same query for multiple landing pages, you will need to assign different foreign keys in that case. But this different model can lead to a different solution, you will have only 1:M relationships and can build an aggregated table by landing page dimension, but this will require to change your queries to extract data. And again I don't know your data, maybe it will make more sense Queries parent of Landing Pages...
Again this are just my "thoughts" no solutions.

Resources