Determine if received data is PostScript or PCL - printing

I have a service that receives printer data via tcp/ip. When the data is received, is there reliable, efficient way to examine the data stream and determine if the data is PostScript vs PCL data? For example, are there characters I could look for at the beginning of the data stream to indicate the format?

I would probably just count the number of escape characters in the file. PCL will have gobs of them. Postscript will have gobs of % signs. That isn't a perfect solution, but it's dead simple and I'll bet it would actually be quite reliable.
The only "real" way I can see doing this is to actually parse the PCL and parse the postscript and see which one works.

I'll add my 2¢.
Like others have mentioned here, your first stab at programmatically identifying the document would be to look at the first two characters. If it starts with %!, it is PostScript, if it starts with an escape character (hex 1B, oct 033, ascii 27), as very likely PCL will start with PCL commands, then it is PCL. This will likely resolve 99% of the documents you need to process. If it still isn't known, then you can search the document for a showpage string. If it's PostScript, it has to have a showpage to render the page. If you can't find one, and if there are any escape characters in the file, you know it is PCL, and you can err on the side of PCL if there is no showpage, and there is no escape characters, because raw text files are valid PCL and printers can blort them out as they come.

Postscript data must begin with "%!ps" or "%!PS" - it may be a longer readable string like "%!PS-Adobe-3.0" - but that is basically this.
Most likely PCL have a similar signature - I remember seeing it in the past.

According to the PCL 5 General Printing FAQs PCL files should start with ESC "E". I assume another ESC sequence must follow. So my guess is that files starting with bytes 1B 45 1B are most likely PCL files.
This leaves PCL files unrecognized which don't adhere to this rule.
In my use case it's macOS that always produces PCL with the ESC E at the beginning.

Related

Gibberish table output in tabula-java for Japanese PDF but works in standalone Tabula

I am trying to extract data from this Japanese PDF using tabula-py (and tabula-java), but the output is gibberish. In both tabula-py and tabula-java, the output isn't human readable (definitely not Japanese characters), and there are no no error/warning messages. It does seem that the content of the PDF is processed though.
When using the standalone Tabula tool, the characters are encoded properly:
Searching online in the tabula-py and tabula-java documentation, and below are suggestions I could find, but these don't change the output.
Setting the -Dfile.encoding=utf8 (in java call to tabula-py or tabula-java)
Setting chcp 65001 (in Windows command prompt)
I understand Tabula and tabula-java (and tabula-py) use the same library, but is there something different between the two that would explain the difference in encoding output?
Background info
There is nothing unusual in this PDF compared to any other.
The text like any PDF is written in authors random order so for example the 1st PDF body Line (港区内認可保育園等一覧) is the 1262nd block of text added long after the table was started. To hear written order we can use Read Aloud, to verify character and language recognition but unless the PDF was correctly tagged it will also jump from text block to block
So internally the text is rarely tabular the first 8 lines are
1 認可保育園
0歳 1歳 2歳3歳4歳5歳 計
短時間 標準時間
001010 区立
3か月
3455-
4669
芝5-18-1-101
Thus you need text extractors that work in a grid like manner or convert the text layout into a row by row output.
This is where all extractors will be confounded as to how to output such a jumbled dense layout and generally ALL will struggle with this page.
Hence its best to use a good generic solution. It will still need data cleaning but at least you will have some thing to work on.
If you only need a zone from the page it is best to set the boundary of interest to avoid extraneous parsing.
Your "standalone Tabula tool" output is very good but could possibly be better by use pdftotext -layout and adjust some options to produce amore regular order.
Your Question
the difference in encoding output?
The Answer
The output from pdf is not the internal coding, so the desired text output is UTF-8, but PDF does not store the text as UTF-8 or unicode it simply uses numbers from a font character map. IF the map is poor everything would be gibberish, however in this case the map is good, so where does the gibberish arise? It is because that out part is not using UTF-8 and console output is rarely unicode.
You correctly show that console needs to be set to Unicode mode then the output should match (except for the density problem)
The density issue would be easier to handle if preprocessed in a flowing format such as HTML
or using a different language

How to detect if user selected .txt file is Unicode/UTF-8 format and Convert to ANSI

My non-Unicode Delphi 7 application allows users to open .txt files.
Sometimes UTF-8/UNICODE .txt files are tried to be opened causing a problem.
I need a function that detects if the user is opening a txt file with UTF-8 or Unicode encoding and Converts it to the system's default code page (ANSI) encoding automatically when possible so that it can be used by the app.
In cases when converting is not possible, the function should return an error.
The ReturnAsAnsiText(filename) function should open the txt file, make detection and conversion in steps like this;
If the byte stream has no bytes values over x7F, its ANSI, return as is
If the byte stream has bytes values over x7F, convert from UTF-8
If the stream has BOM; try Unicode conversion
If conversion to the system's current code page is not possible, return NULL to indicate an error.
It will be an OK limit for this function, that the user can open only those files that match their region/codepage (Control Panel Regional Region Settings for non-Unicode apps).
The conversion function ReturnAsAnsiText, as you designed, will have a number of issues:
The Delphi 7 application may not be able to open files where the filename using UTF-8 or UTF-16.
UTF-8 (and other Unicode) usage has increased significantly from 2019. Current web pages are between 98% and 100% UTF-8 depending on the language.
You design will incorrectly translate some text that a standards compliant would handle.
Creating the ReturnAsAnsiText is beyond the scope of an answer, but you should look at locating a library you can use instead of creating a new function. I haven't used Delphi 2005 (I believe that is 7), but I found this MIT licensed library that may get you there. It has a number of caveats:
It doesn't support all forms of BOM.
It doesn't support all encodings.
There is no universal "best-fit" behavior for single-byte character sets.
There are other issues that are tangentially described in this question. You wouldn't use an external command, but I used one here to demonstrate the point:
% iconv -f utf-8 -t ascii//TRANSLIT < hello.utf8
^h'elloe
iconv: (stdin):1:6: cannot convert
% iconv -f utf-8 -t ascii < hello.utf8
iconv: (stdin):1:0: cannot convert
Enabling TRANSLIT in standards based libraries supports converting characters like é to ASCII e. But still fails on characters like π, since there are no similar in form ASCII characters.
Your required answer would need massive UTF-8 and UTF-16 translation tables for every supported code page and BMP, and would still be unable to reliably detect the source encoding.
Notepad has trouble with this issue.
The solution as requested, would probably entail more effort than you put into the original program.
Possible solutions
Add a text editor into your program. If you write it, you will be able to read it.
The following solution pushes the translation to established tables provided by Windows.
Use the Win32 API native calls translate strings using functions like WideCharToMultiByte, but even this has its drawbacks(from the referenced page, the note is more relevant to the topic, but the caution is important for security):
Caution  Using the WideCharToMultiByte function incorrectly can compromise the security of your application. Calling this function can easily cause a buffer overrun because the size of the input buffer indicated by lpWideCharStr equals the number of characters in the Unicode string, while the size of the output buffer indicated by lpMultiByteStr equals the number of bytes. To avoid a buffer overrun, your application must specify a buffer size appropriate for the data type the buffer receives.
Data converted from UTF-16 to non-Unicode encodings is subject to data loss, because a code page might not be able to represent every character used in the specific Unicode data. For more information, see Security Considerations: International Features.
Note  The ANSI code pages can be different on different computers, or can be changed for a single computer, leading to data corruption. For the most consistent results, applications should use Unicode, such as UTF-8 or UTF-16, instead of a specific code page, unless legacy standards or data formats prevent the use of Unicode. If using Unicode is not possible, applications should tag the data stream with the appropriate encoding name when protocols allow it. HTML and XML files allow tagging, but text files do not.
This solution still has the guess the encoding problem, but if a BOM is present, this is one of the best translators possible.
Simply require the text file to be saved in the local code page.
Other thoughts:
ANSI, ASCII, and UTF-8 are all separate encodings above 127 and the control characters are handled differently.
In UTF-16 every other byte(zero first) of ASCII encoded text is 0. This is not covered in your "rules".
You simply have to search for the Turkish i to understand the complexities of Unicode translations and comparisons.
Leverage any expectations of the file contents to establish a coherent baseline comparison to make an educated guess.
For example, if it is a .csv file, find a comma in the various formats...
Bottom Line
There is no perfect general solution, only specific solutions tailored to your specific needs, which were extremely broad in the question.

Are there Ansi escape sequences for superscript and subscript?

I'm playing around with ANSI escape sequences, e.g.
echo -e "\e[91mHello\e[m"
on a Linux console to display colored text.
Now I try to use superscript and subscript output like a=b².
I read here and here about: Partial Line Down (subscript) and Partial Line Up (superscript) but I'm not sure about the exact syntax and even which terminal client might supports this.
Any suggestions about this?
Possibly some commercial product supports it, but it's not supported by any terminal emulator you'll encounter (unless someone modifies one just to prove a point).
The standard describes possible escape sequences, but there is no requirement that any given sequence is supported by any terminal. There are commonly supported (and assumed) sequences such as clearing the screen, but even for that, not all terminals have supported the feature.
The reason is that terminal emulators are generally used with applications (such as text editors) which assume a regular set of rows/columns, and that the text is shown compactly (no extra space such as would be needed to allow for partial line movement. Back in the day when people used typewriters, it was common to have 1.5 or 2.0 line-spacing, and get no more than 33 lines on a page. That changed, long ago.
The need for subscripts/superscripts didn't go away — Unicode provides a usable set of characters with that representation (see Superscripts and Subscripts
Range: 2070–209F)
Further reading:
Your New Royal Portable (1953).
Line Spacing - Butterick's Practical Typography
console_codes - Linux console escape and control sequences

Squeak Monticello character-encoding

For a work project I am using headless Squeak on a (displayless, remote) Linuxserver and also using Squeak on a Windows developer-machine.
Code on the developer machine is managed using Monticello. I have to copy the mcz to the server using SFTP unfortunately (e.g. having a push-repository on the server is not possible for security reasons). The code is then merged by eg:
MczInstaller installFileNamed: 'name-b.18.mcz'.
Which generally works.
Unfortunately our code-base contains strings that contain Umlauts and other non-ascii characters. During the Monticello-reimport some of them get replaced with other characters and some get replaced with nothing.
I also tried e.g.
MczInstaller installStream: (FileStream readOnlyFileNamed: '...') binary
(note .mcz's are actually .zip's, so binary should be appropriate, i guess it is the default anyway)
Finding out how to make Monticello's transfer preserve the Squeak internal-encoding of non-ascii's is the main Goal of my question. Changing all the source code to only use ascii-strings is (at least in this codebase) much less desirable because manual labor is involved. If you are interested in why it is not a simple grep-replace in this case read this side note:
(Side note: (A simplified/special case) The codebase uses Seaside's #text: method to render strings that contain chars that have to be html-escaped. This works fine with our non-ascii's e.g. it converts ä into ä, if we were to grep-replace the literal ä's by ä explicitly, then we would have to use the #html: method instead (else double-escape), however that would then require that we replace all other characters that have to be html-escaped as well (e.g. &), but then again the source-code itself contains such characters. And there are other cases, like some #text:'s that take third-party strings, they may not be replaced by #html's...)
Squeak does use unicode (ISO 10646) internally for encoding characters in a String.
It might use extension like CP1252 for characters in range 16r80 to: 16r9F, but I'm not really sure anymore.
The characters codes are written as is on the stream source.st, and these codes are made of a single byte for a ByteString when all characters are <= 16rFF. In this case, the file should look like encoded in ISO-8859-L1 or CP1252.
If ever you have character codes > 16rFF, then a WideString is used in Squeak. Once again the codes are written as is on the stream source.st, but this time these are 32 bits codes (written in big-endian order). Technically, the encoding is thus UTF-32BE.
Now what does MczInstaller does? It uses the snapshot/source.st file, and uses setConverterForCode for reading this file, which is either UTF-8 or MacRoman... So non ASCII characters might get changed, and this is even worse in case of WideString which will be re-interpreted as ByteString.
MC itself doesn't use the snapshot/source.st member in the archive.
It rather uses the snapshot.bin (see code in MCMczReader, MCMczWriter).
This is a binary file whose format is governed by DataStream.
The snippet that you should use is rather:
MCMczReader loadVersionFile: 'YourPackage-b.18.mcz'
Monticello isn't really aware of character encoding. I don't know the present situation in squeak but the last time I've looked into it there was an assumed character encoding of latin1. But that would mean it should work flawlessly in your situation.
It should work somehow anyway if you are writing and reading from the same kind of image. If the proper character encoding fails usually the internal byte representation is written from memory to disk. While this prevents any cross dialect exchange of packages it should work if using the same image kind.
Anyway there are things that should or could work but they often go wrong. So most projects try to avoid using non 7bit characters in their code.
You don't need to convert non 7bit characters to HTML entities. You can use
Character value: 228
for producing an ä in your code without using non 7bit characters. On every character you like to add a conversion you can do
$ä asciiValue => 228
I know this is not the kind of answer some would want to get. But monticello is one of these things that still need to be adjusted for proper character encoding.

Parsing PDF files

I'm finding it difficult to parse a pdf file that's created in a non-english language. I used pdfbox and itext but couldn't find anything in there that could help parse this file. Here's the pdf file that I'm talking about: http://prapatti.com/slokas/telugu/vishnusahasranaamam.pdf The pdf says that it's created use LaTeX and Tikkana font. I have Tikkana font installed on my machine, but that didn't help. Please help me in this.
Thanks, K
When you say "parse PDF files", my first thought was that the PDF in question wasn't opening in various PDF viewers & libraries, and was therefore corrupt in some way.
But that's not the case at all. It opens just fine in Acrobat Reader X. And then I see the text on the page.
And when I copy/paste that text from the first page, I get:
Ûûp{¨¶ðQ{p{¨|={pÛû{¨>üb¶úN}l{¨d{p{¨> >Ûpû¶bp{¨}|=/}pT¶=}Nm{Z{Úpd{m}a¾Ú}mp{Ú¶¨>ztNð{øÔ_c}m{ТÁ}=N{Nzt¶ztbm}¥Ázv¬b¢Á
Á ÛûÁøÛûzÏrze¨=ztTzv}lÛzt{¨d¨c}p{Ðu{¨½ÐuÛ½{=Û Á{=Á Á ÁÛûb}ßb{q{d}p{¨ze=Vm{Ðu½Û{=Á
That's from Reader.
Much of the text in this PDF is written using various "Type 3" fonts. These fonts claim to use "WinAnsiEncoding" (Also Known As code page 1252), with a "differences" array. This differences array is wrong:
47 /BB 61 /BP /BQ 81 /C6...
The first number is the code point being replaced, the second is a Name of a character that replaces the original value at that code point.
There's no such character names as BB, BP, BQ, C9... and so on. So when you copy-paste that text, you get the above garbage.
I'm sorry, but the only reliable way to extract text from such a PDF is OCR (optical character recognition).
Eh... Long shot idea:
If you can find the specific versions of the specific fonts used to generate this PDF, you just might be able to determine the actual stream contents of known characters converted to Type 3 fonts in this way.
Once you have these known streams, you can compare them to the streams in the PDF and use that to build your own translation table.
You could either fix the existing PDF[s] (by changing the names in the encoding dictionary and Type 3 charproc entries) such that these text extractors will work correctly, or just grab the bytes out of the stream and translate them yourself.
The workflow would go something like this:
For each character in a font used in the form:
render it to PDF by itself using the same LaTeK/GhostScript versions.
Open the PDF and find the CharProc for that particular known character.
Store that stream along with the known character used to build it.
For each text byte in the PDF to be interpreted.
Get the glyph name for the given byte based on the existing encoding array
Get the "char proc" stream for that glyph name and compare it to your known char procs.
NOTE: This could be rewritten to be much more efficient with some caching, but it gets the idea across (I hope).
All that requires a fairly deep understanding of PDF and the parsing methods involved. But it just might work. Might not too...

Resources