Count number of paths among points in N-dimention grid? - path

How to count number of paths between two points in an N-dimension grid?
I know that this can be done in a NxN grid using the formula (x'+y')C(x') where x' and y' are the difference between the x and y coordinates of two points.
I m interested in a extension of above formula to higher dimensions.

For two dimensions, read up on Catalan numbers (http://en.wikipedia.org/wiki/Catalan_number). Note that the formula assumes monotonic paths.

Related

Combine two datasets with each their own X and Y axes in same plot in Tableau

We have two datasets that each consist of an X and an Y axis. The two X and the two Y axes have the same scaling (millimeters) but the values of course differ. So for the X values in dataset 1 there are no corresponding values in dataset 2.
If we just put the plots into one plot with dual X and dual Y axes, the two datasets are somehow combined into four different plots, one for each combination of the X and Y axes. Like we want the plot for X1/Y1 and for X2/Y2. What we're also seeing are plots X1/Y2 and X2/Y1 which do not make any sense at all.
How do we correctly combine the two datasets into a single plot where they only share the same X and Y axes but do not mix like that?
The easiest solution is to combine and reshape your data to have 3 columns;X, Y, Type - where Type distinguishes between the data sets, could be actual vs predicted for example. Then just put x (as a continuous dimension) on columns, y on rows and type on color or detail.
You can reshape the data like this using the UNION feature when defining your data source

Feature Scaling with Octave

I want to do feature scaling datasets by using means and standard deviations, and my code is below; but apparently it is not a univerisal code, since it seems only work with one dataset. Thus I am wondering what is wrong with my code, any help will be appreciated! Thanks!
X is the dataset I am currently using.
mu = mean(X);
sigma = std(X);
m = size(X, 1);
mu_matrix = ones(m, 1) * mu;
sigma_matrix = ones(m, 1) * sigma;
featureNormalize = (X-mu_matrix)/sigma;
Thank you for clarifying what you think the code should be doing in the comments.
My answer will effectively answer why what you think is happening is not what is happening.
First let's talk about the mean and std functions. When their input is a vector (whether this is vertically or horizontally aligned), then this will return a single number which is the mean or standard deviation of that vector respectively, as you might expect.
However, when the input is a matrix, then you need to know what it does differently. Unless you specify the direction (dimension) in which you should be calculating means / std, then it will calculate means along the rows, i.e. returning a single number for each column. Therefore, the end-result of this operation will be a horizontal vector.
Therefore, both mu and sigma will be horizontal vectors in your code.
Now let's move on to the 'matrix multiplication' operator (i.e. *).
When using the matrix multiplication operator, if you multiply a horizontal vector with a vertical vector (i.e. the usual matrix multiplication operation), your output is a single number (i.e. a scalar). However, if you reverse the orientations, as in, you multiply a vertical vector by a horizontal one, you will in fact be calculating a 'Kronecker product' instead. Since the output of the * operation is completely defined by the rows of the first input, and the columns of the second input, whether you're getting a matrix multiplication or a kronecker product is implicit and entirely dependent on the orientation of your inputs.
Therefore, in your case, the line mu_matrix = ones(m, 1) * mu; is not in fact appending a vector of ones, like you say. It is in fact performing the kronecker product between a vertical vector of ones, and the horizontal vector that is your mu, effectively creating an m-by-n matrix with mu repeated vertically for m rows.
Therefore, at the end of this operation, as the variable naming would suggest, mu_matrix is in fact a matrix (same with sigma_matrix), having the same size as X.
Your final step is X- mu_sigma, which gives you at each element, the difference between x and mu at that element. Then you "divide" with the sigma matrix.
Here is why I asked if you were sure you should be using ./ instead of /.
/ is the matrix division operator. With / You are effectively performing matrix multiplication by an inverse matrix, since D / S is mathematically equivalent to D * inv(S). It seems to me you should be using ./ instead, to simply divide each element by the standard deviation of that column (which is why you had to repeat the horizontal vector over m rows in sigma_matrix, so that you could use it for 'elementwise division'), since what you are trying to do is to normalise each row (i.e. observation) of a particular column, by the standard deviation that is specific to that column (i.e. feature).

Implementing convolutional neural network backprop in ArrayFire (gradient calculation)

I modified equation 9.12 in http://www.deeplearningbook.org/contents/convnets.html to center the MxN convolution kernel.
That gives the following expression (take it on faith for now) for the gradient, assuming 1 input and 1 output channel (to simplify):
dK(krow, kcol) = sum(G(row, col) * V(row+krow-M/2, col+kcol-N/2); row, col)
To read the above, the single element of dK at krow, kcol is equal to the sum over all of the rows and cols of the product of G times a shifted V. Note G and V have the same dimensions. We will define going outside V to result in a zero.
For example, in one dimension, if G is [a b c d], V is [w x y z], and M is 3, then the first sum is dot (G, [0 w x y]), the second sum is dot (G, [w x y z]), and the third sum is dot (G, [x y z 0]).
ArrayFire has a shift operation, but it does a circular shift, rather than a shift with zero insertion. Also, the kernel sizes MxN are typically small, e.g., 7x7, so it seems a more optimal implementation would read in G and V once only, and accumulate over the kernel.
For that 1D example, we would read in a and w,x and start with [a*0 aw ax]. Then we read in b,y and add [bw bx by]. Then read in c,z and add [cx cy cz]. Then read in d and finally add [dy dz d*0].
Is there a direct way to compute dK in ArrayFire? I can't help but think this is some kind of convolution, but I've been unable to wrap my head around what the convolution would look like.
Ah so. For a 3x3 dK array, I use unwrap to convert my MxN input arrays to two MxN column vectors. Then I do 9 dot products of shifted subsets of the two column vectors. No, that doesn't work since the shift is in 2 dimensions.
So I need to create intermediate arrays of 1 x (MxN) and (MxN) x 9 in size, where each column of the latter is a shifted MxN window of the original with a pad border of zeros of size 1, and then do a matrix multiply.
Hmm, that requires too much memory (sometimes.) So the final solution is to do a gfor over the output 3x3, and for each loop, do a dot product of the unwrapped-once G and the unwrapped-repeatedly V.
Agreed?

Bhattacharya distance between R,G,B Y Cb Cr components of two images

I have 2 images taken from two different cameras and I have to associate an object in both images. I have separated RGB ycbcr components and calculated the histogram of each component separately from both images
Then I concatenated histograms of all components into one vector.
I have already normalized each histogram separately so that sum(h)=1;
But when I have concatenated all histograms sum of that vector= 6.
and
when I applied Bhattacharya distance on both vectors the result is in range 4 and 5.
I cannot understand the similarity results because as per my knowledge result of Bhattacharya distance is 0-1
Please help
the best Bhattacharya distance is 2;
it is Jeffreys-Matusita distance that measure of Battachaya distance
if you have 2 class and the Jeffreys-Matusita was near 2 its good for classification and if it war near 0 the classes are same

K Nearest Neighbor classifier

I have set of about 200 points (x,y) of an image. The 200 data belong to 11 classes (which I think will become the class labels). My problem is how do I represent the x, y values as one data?
My first thought is that I should represent them separately with the labels and then when I get a point to classify, I will classify x and y separately. Something in me tells me that this is incorrect.
Please advice me how to present the x,y value as one data element.
I can't imagine what problem you meet. In kNN algorithm, we can use variables with multiple dimensions, you just need to use list in python standard library or array in Numpy library to organize the data such as : group = numpy.array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
or group = [[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]] to represent (1.0,1.1) (1.0,1.0) (0,0) (0,0.1).
However, I suggest to use numpy, as there're so many functions in it and they are implemented by C language which ensure the efficiency of programs.
If you use numpy, you'd better to do all the operations in matrix way, for example, you can use point=tile([0,0],(3,1))anddistance(group-point)(distance is a function written by me) to calculate the distance without iteration.
The key is not representation but distance calculation instead. The points in your case are essentially one element but with two dimensions (x, y). The kNN algorithm can handle n-dimension case itself: it finds the k-nearest neighbors. So you can use the euclidean distance d((x1, y1), (x2, y2))=((x1-x2)^2 + (y1-y2)^2)^0.5, where (x1, y1) represents the first point to calculate, as the distances of points in your case.

Resources