I'm trying to modify a simple dynamic vector in CUDA using the thrust library of CUDA. But I'm getting "launch_closure_by_value" error on the screen indicatiing that the error is related to some synchronization process.
A simple 1D dynamic array modification is not possible due to this error.
My code segment which is causing the error is as follows.
from a .cpp file I call setIndexedGrid, which is defined in System.cu
float* a= (float*)(malloc(8*sizeof(float)));
a[0]= 0; a[1]= 1; a[2]= 2; a[3]= 3; a[4]= 4; a[5]= 5; a[6]= 6; a[7]= 7;
float* b = (float*)(malloc(8*sizeof(float)));
setIndexedGridInfo(a,b);
The code segment at System.cu:
void
setIndexedGridInfo(float* a, float*b)
{
thrust::device_ptr<float> d_oldData(a);
thrust::device_ptr<float> d_newData(b);
float c = 0.0;
thrust::for_each(
thrust::make_zip_iterator(thrust::make_tuple(d_oldData,d_newData)),
thrust::make_zip_iterator(thrust::make_tuple(d_oldData+8,d_newData+8)),
grid_functor(c));
}
grid_functor is defined in _kernel.cu
struct grid_functor
{
float a;
__host__ __device__
grid_functor(float grid_Info) : a(grid_Info) {}
template <typename Tuple>
__device__
void operator()(Tuple t)
{
volatile float data = thrust::get<0>(t);
float pos = data + 0.1;
thrust::get<1>(t) = pos;
}
};
I also get these on the Output window (I use Visual Studio):
First-chance exception at 0x000007fefdc7cacd in Particles.exe:
Microsoft C++ exception: cudaError_enum at memory location
0x0029eb60.. First-chance exception at 0x000007fefdc7cacd in
smokeParticles.exe: Microsoft C++ exception:
thrust::system::system_error at memory location 0x0029ecf0.. Unhandled
exception at 0x000007fefdc7cacd in Particles.exe: Microsoft C++
exception: thrust::system::system_error at memory location
0x0029ecf0..
What is causing the problem?
You are trying to use host memory pointers in functions expecting pointers in device memory. This code is the problem:
float* a= (float*)(malloc(8*sizeof(float)));
a[0]= 0; a[1]= 1; a[2]= 2; a[3]= 3; a[4]= 4; a[5]= 5; a[6]= 6; a[7]= 7;
float* b = (float*)(malloc(8*sizeof(float)));
setIndexedGridInfo(a,b);
.....
thrust::device_ptr<float> d_oldData(a);
thrust::device_ptr<float> d_newData(b);
The thrust::device_ptr is intended for "wrapping" a device memory pointer allocated with the CUDA API so that thrust can use it. You are trying to treat a host pointer directly as a device pointer. That is illegal. You could modify your setIndexedGridInfo function like this:
void setIndexedGridInfo(float* a, float*b, const int n)
{
thrust::device_vector<float> d_oldData(a,a+n);
thrust::device_vector<float> d_newData(b,b+n);
float c = 0.0;
thrust::for_each(
thrust::make_zip_iterator(thrust::make_tuple(d_oldData.begin(),d_newData.begin())),
thrust::make_zip_iterator(thrust::make_tuple(d_oldData.end(),d_newData.end())),
grid_functor(c));
}
The device_vector constructor will allocate device memory and then copy the contents of your host memory to the device. That should fix the error you are seeing, although I am not sure what you are trying to do with the for_each iterator and whether the functor you have wrttien is correct.
Edit:
Here is a complete, compilable, runnable version of your code:
#include <cstdlib>
#include <cstdio>
#include <thrust/device_vector.h>
#include <thrust/for_each.h>
#include <thrust/copy.h>
struct grid_functor
{
float a;
__host__ __device__
grid_functor(float grid_Info) : a(grid_Info) {}
template <typename Tuple>
__device__
void operator()(Tuple t)
{
volatile float data = thrust::get<0>(t);
float pos = data + 0.1f;
thrust::get<1>(t) = pos;
}
};
void setIndexedGridInfo(float* a, float*b, const int n)
{
thrust::device_vector<float> d_oldData(a,a+n);
thrust::device_vector<float> d_newData(b,b+n);
float c = 0.0;
thrust::for_each(
thrust::make_zip_iterator(thrust::make_tuple(d_oldData.begin(),d_newData.begin())),
thrust::make_zip_iterator(thrust::make_tuple(d_oldData.end(),d_newData.end())),
grid_functor(c));
thrust::copy(d_newData.begin(), d_newData.end(), b);
}
int main(void)
{
const int n = 8;
float* a= (float*)(malloc(n*sizeof(float)));
a[0]= 0; a[1]= 1; a[2]= 2; a[3]= 3; a[4]= 4; a[5]= 5; a[6]= 6; a[7]= 7;
float* b = (float*)(malloc(n*sizeof(float)));
setIndexedGridInfo(a,b,n);
for(int i=0; i<n; i++) {
fprintf(stdout, "%d (%f,%f)\n", i, a[i], b[i]);
}
return 0;
}
I can compile and run this code on an OS 10.6.8 host with CUDA 4.1 like this:
$ nvcc -Xptxas="-v" -arch=sm_12 -g -G thrustforeach.cu
./thrustforeach.cu(18): Warning: Cannot tell what pointer points to, assuming global memory space
./thrustforeach.cu(20): Warning: Cannot tell what pointer points to, assuming global memory space
./thrustforeach.cu(18): Warning: Cannot tell what pointer points to, assuming global memory space
./thrustforeach.cu(20): Warning: Cannot tell what pointer points to, assuming global memory space
ptxas info : Compiling entry function '_ZN6thrust6detail7backend4cuda6detail23launch_closure_by_valueINS2_18for_each_n_closureINS_12zip_iteratorINS_5tupleINS0_15normal_iteratorINS_10device_ptrIfEEEESB_NS_9null_typeESC_SC_SC_SC_SC_SC_SC_EEEEi12grid_functorEEEEvT_' for 'sm_12'
ptxas info : Used 14 registers, 160+0 bytes lmem, 16+16 bytes smem, 4 bytes cmem[1]
ptxas info : Compiling entry function '_ZN6thrust6detail7backend4cuda6detail23launch_closure_by_valueINS2_18for_each_n_closureINS_12zip_iteratorINS_5tupleINS0_15normal_iteratorINS_10device_ptrIfEEEESB_NS_9null_typeESC_SC_SC_SC_SC_SC_SC_EEEEj12grid_functorEEEEvT_' for 'sm_12'
ptxas info : Used 14 registers, 160+0 bytes lmem, 16+16 bytes smem, 4 bytes cmem[1]
$ ./a.out
0 (0.000000,0.100000)
1 (1.000000,1.100000)
2 (2.000000,2.100000)
3 (3.000000,3.100000)
4 (4.000000,4.100000)
5 (5.000000,5.100000)
6 (6.000000,6.100000)
7 (7.000000,7.100000)
Related
I have a TitanXP installed in a Windows 10 64bit with CUDA 9.2 and Nvidia driver (398.82-desktop-win10-64bit-international-whql), and I have a simple program which uses unified memory like below.
// CUDA kernel to add elements of two arrays
__global__
void add(int n, float *x, float *y)
{
int index = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride)
y[i] = x[i] + y[i];
}
int main(void)
{
int N = 1 << 20;
float *x, *y;
// Allocate Unified Memory -- accessible from CPU or GPU
cudaMallocManaged(&x, N * sizeof(float));
cudaMallocManaged(&y, N * sizeof(float));
// initialize x and y arrays on the host
for (int i = 0; i < N; i++) {
x[i] = 1.0f;
y[i] = 2.0f;
}
// Launch kernel on 1M elements on the GPU
int blockSize = 256;
int numBlocks = (N + blockSize - 1) / blockSize;
add <<< numBlocks, blockSize >>>(N, x, y);
// Wait for GPU to finish before accessing on host
cudaDeviceSynchronize();
// Check for errors (all values should be 3.0f)
float maxError = 0.0f;
for (int i = 0; i < N; i++)
maxError = fmax(maxError, fabs(y[i] - 3.0f));
std::cout << "Max error: " << maxError << std::endl;
// Free memory
cudaFree(x);
cudaFree(y);
return 0;
}
I compile this code using Visual Studio 2017 community, and run it in the command prompt window with no error.
When I profile it in Nvidia Profiler, it gives me a "Warning" message as below.
"==852== Warning: Unified Memory Profiling is not supported on the
current configuration because a pair of devices without peer-to-peer
support is detected on this multi-GPU setup. When peer mappings are
not available, system falls back to using zero-copy memory. It can
cause kernels, which access unified memory, to run slower. More
details can be found at:
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-
managed-memory"
I am pretty sure I only have one GPU installed in the computer, why I can not get the unified memory profiling information?
By the way, I did the exactly same experiment in my another machine which has the same software environment and same GPU, and the profiler does show the unified memory information. Is there any wrong with that specific computer? Is there any hardware related configuration/setting I need to do in order to enable the unified memory feature?
I had faced this problem in the past, but after updating my driver to the last version (Released in 19/9/2018 if I am not mistaken) the problem resolved.
Hope it will resolve your problem as well.
Let me know if it did.
I install the new cuda sdk 10, and it works fine now.
Recently, there have been some efforts in GCC community to support OpenACC in their compiler. So, I wanted to try it out.
Using this step-by-step tutorial (tutorial), which was close to the main documentation on GCC website, I was able to compile and build GCC 6.1 with OpenACC support.
Then, I compiled my program using following command:
gcc pi.c -fopenacc -foffload=nvptx-none -foffload="-O3" -O3
And, everything goes without any errors.
The execution is without error, but no correct answer.
Here are my C code and the output of the running program:
#include <stdio.h>
#include <openacc.h>
#define N 20000
#define vl 1024
int main(void) {
double pi = 0.0f;
long long i;
int change = 0;
printf("Number of devices: %d\n", acc_get_num_devices(acc_device_nvidia));
#pragma acc parallel
{
change = 1;
#pragma acc loop reduction(+:pi) private(i)
for (i=0; i<N; i++) {
double t= (double)((i+0.5)/N);
pi +=4.0/(1.0+t*t);
}
}
printf("Change: %d\n", change);
printf("pi=%11.10f\n",pi/N);
pi = 0.0;
for (i=0; i<N; i++) {
double t= (double)((i+0.5)/N);
pi +=4.0/(1.0+t*t);
}
printf("pi=%11.10f\n",pi/N);
return 0;
}
And this is the output after running a.out:
Number of devices: 1
Change: 0
pi=0.0000000000
pi=3.1415926538
Any ideas?
Try moving "parallel" to the loop instead of the block.
// #pragma acc parallel
{
change = 1;
#pragma acc parallel loop reduction(+:pi)
for (i=0; i<N; i++) {
double t= (double)((i+0.5)/N);
pi +=4.0/(1.0+t*t);
}
}
I just tried this with gcc 6.1 and it worked correctly. Note that there's no need to privatize "i" since scalars are private by default.
I thought the maximal size of global memory should be only limited by the GPU device no matter it is allocated statically using __device__ __manged__ or dynamically using cudaMalloc.
But I found that if using the __device__ manged__ way, the maximum array size I can declare is much smaller than the GPU device limit.
The minimal working example is as follows:
#include <stdio.h>
#include <cuda_runtime.h>
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
#define MX 64
#define MY 64
#define MZ 64
#define NX 64
#define NY 64
#define M (MX * MY * MZ)
__device__ __managed__ float A[NY][NX][M];
__device__ __managed__ float B[NY][NX][M];
__global__ void swapAB()
{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for(int j = 0; j < NY; j++)
for(int i = 0; i < NX; i++)
A[j][i][tid] = B[j][i][tid];
}
int main()
{
swapAB<<<M/256,256>>>();
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
return 0;
}
It uses 64 ^5 * 2 * 4 / 2^30 GB = 8 GB global memory, and I'll run compile and run it on a Nvidia Telsa K40c GPU which has a 12GB global memory.
Compiler cmd:
nvcc test.cu -gencode arch=compute_30,code=sm_30
Output warning:
warning: overflow in implicit constant conversion.
When I ran the generated executable, an error says:
GPUassert: an illegal memory access was encountered test.cu
Surprisingly, if I use the dynamically allocated global memory of the same size (8GB) via the cudaMalloc API instead, there is no compiling warning and runtime error.
I'm wondering if there are any special limitation about the allocatable size of static global device memory in CUDA.
Thanks!
PS: OS and CUDA: CentOS 6.5 x64, CUDA-7.5.
This would appear to be a limitation of the CUDA runtime API. The root cause is this function (in CUDA 7.5):
__cudaRegisterVar(
void **fatCubinHandle,
char *hostVar,
char *deviceAddress,
const char *deviceName,
int ext,
int size,
int constant,
int global
);
which only accepts a signed int for the size of any statically declared device variable. This would limit the maximum size to 2^31 (2147483648) bytes. The warning you see is because the CUDA front end is emitting boilerplate code containing calls to __cudaResgisterVar like this:
__cudaRegisterManagedVariable(__T26, __shadow_var(A,::A), 0, 4294967296, 0, 0);
__cudaRegisterManagedVariable(__T26, __shadow_var(B,::B), 0, 4294967296, 0, 0);
It is the 4294967296 which is the source of the problem. The size will overflow the signed integer and cause the API call to blow up. So it seems you are limited to 2Gb per static variable for the moment. I would recommend raising this as a bug with NVIDIA if it is a serious problem for your application.
I am trying to implement an algorithm to process images with more than 256 bins.
The main issue to process histogram in such case comes from the impossibility to allocate more than 32 Kb as local tab in the GPU.
All the algorithms I found for 8 bits per pixel images use a fixed size tab locally.
The histogram is the first process in that tab then a barrier is up and at last an addition is made with the output vector.
I am working with IR image which has more than 32K bins of dynamic.
So I cannot allocate a fixed size tab inside the GPU.
My algorithm use an atomic_add in order to create directly the output histogram.
I am interfacing with OpenCV so, in order to manage the possible case of saturation my bins use floating points. Depending on the ability of the GPU to manage single or double precision.
OpenCV doesn't manage unsigned int, long, and unsigned long data type as matrix type.
I have an error... I do think this error is a kind of segmentation fault.
After several days I still have no idea what can be wrong.
Here is my code :
histogram.cl :
#pragma OPENCL EXTENSION cl_khr_fp64: enable
#pragma OPENCL EXTENSION cl_khr_int64_base_atomics: enable
static void Atomic_Add_f64(__global double *val, double delta)
{
union {
double f;
ulong i;
} old;
union {
double f;
ulong i;
} new;
do {
old.f = *val;
new.f = old.f + delta;
}
while (atom_cmpxchg ( (volatile __global ulong *)val, old.i, new.i) != old.i);
}
static void Atomic_Add_f32(__global float *val, double delta)
{
union
{
float f;
uint i;
} old;
union
{
float f;
uint i;
} new;
do
{
old.f = *val;
new.f = old.f + delta;
}
while (atom_cmpxchg ( (volatile __global ulong *)val, old.i, new.i) != old.i);
}
__kernel void khist(
__global const uchar* _src,
const int src_steps,
const int src_offset,
const int rows,
const int cols,
__global uchar* _dst,
const int dst_steps,
const int dst_offset)
{
const int gid = get_global_id(0);
// printf("This message has been printed from the OpenCL kernel %d \n",gid);
if(gid < rows)
{
__global const _Sty* src = (__global const _Sty*)_src;
__global _Dty* dst = (__global _Dty*) _dst;
const int src_step1 = src_steps/sizeof(_Sty);
const int dst_step1 = dst_steps/sizeof(_Dty);
src += mad24(gid,src_step1,src_offset);
dst += mad24(gid,dst_step1,dst_offset);
_Dty one = (_Dty)1;
for(int c=0;c<cols;c++)
{
const _Rty idx = (_Rty)(*(src+c+src_offset));
ATOMIC_FUN(dst+idx+dst_offset,one);
}
}
}
The function Atomic_Add_f64 directly come from here and there
main.cpp
#include <opencv2/core.hpp>
#include <opencv2/core/ocl.hpp>
#include <fstream>
#include <sstream>
#include <chrono>
int main()
{
cv::Mat_<unsigned short> a(480,640);
cv::RNG rng(std::time(nullptr));
std::for_each(a.begin(),a.end(),[&](unsigned short& v){ v = rng.uniform(0,100);});
bool ret = false;
cv::String file_content;
{
std::ifstream file_stream("../test/histogram.cl");
std::ostringstream file_buf;
file_buf<<file_stream.rdbuf();
file_content = file_buf.str();
}
int output_flag = cv::ocl::Device::getDefault().doubleFPConfig() == 0 ? CV_32F : CV_64F;
cv::String atomic_fun = output_flag == CV_32F ? "Atomic_Add_f32" : "Atomic_Add_f64";
cv::ocl::ProgramSource source(file_content);
// std::cout<<source.source()<<std::endl;
cv::ocl::Kernel k;
cv::UMat src;
cv::UMat dst = cv::UMat::zeros(1,65536,output_flag);
a.copyTo(src);
atomic_fun = cv::format("-D _Sty=%s -D _Rty=%s -D _Dty=%s -D ATOMIC_FUN=%s",
cv::ocl::typeToStr(src.depth()),
cv::ocl::typeToStr(src.depth()), // this to manage case like a matrix of usigned short stored as a matrix of float.
cv::ocl::typeToStr(output_flag),
atomic_fun.c_str());
ret = k.create("khist",source,atomic_fun);
std::cout<<"check create : "<<ret<<std::endl;
k.args(cv::ocl::KernelArg::ReadOnly(src),cv::ocl::KernelArg::WriteOnlyNoSize(dst));
std::size_t sz = a.rows;
ret = k.run(1,&sz,nullptr,false);
std::cout<<"check "<<ret<<std::endl;
cv::Mat b;
dst.copyTo(b);
std::copy_n(b.ptr<double>(0),101,std::ostream_iterator<double>(std::cout," "));
std::cout<<std::endl;
return EXIT_SUCCESS;
}
Hello I arrived to fix it.
I don't really know where the issue come from.
But if I suppose the output as a pointer rather than a matrix it work.
The changes I made are these :
histogram.cl :
__kernel void khist(
__global const uchar* _src,
const int src_steps,
const int src_offset,
const int rows,
const int cols,
__global _Dty* _dst)
{
const int gid = get_global_id(0);
if(gid < rows)
{
__global const _Sty* src = (__global const _Sty*)_src;
__global _Dty* dst = _dst;
const int src_step1 = src_steps/sizeof(_Sty);
src += mad24(gid,src_step1,src_offset);
ulong one = 1;
for(int c=0;c<cols;c++)
{
const _Rty idx = (_Rty)(*(src+c+src_offset));
ATOMIC_FUN(dst+idx,one);
}
}
}
main.cpp
k.args(cv::ocl::KernelArg::ReadOnly(src),cv::ocl::KernelArg::PtrWriteOnly(dst));
The rest of the code is the same in the two files.
For me it work fine.
If someone know why it work when the ouput is declared as a pointer rather than a vector (matrix of one row) I am interested.
Nevertheless my issue is fix :).
So I wrote some numerical code in C but wanted to call it from F#. However it runs incredibly slowly.
Times:
gcc -O3 : 4 seconds
gcc -O0 : 30 seconds
fsharp code which calls the optimised gcc code: 2 minutes 30 seconds.
For reference, the c code is
int main(int argc, char** argv)
{
setvals(100,100,15,20.0,0.0504);
float* dmats = malloc(sizeof(float) * factor*factor);
MakeDmat(1.4,-1.92,dmats); //dmat appears to be correct
float* arr1 = malloc(sizeof(float)*xsize*ysize);
float* arr2 = malloc(sizeof(float)*xsize*ysize);
randinit(arr1);
for (int i = 0;i < 10000;i++)
{
evolve(arr1,arr2,dmats);
evolve(arr2,arr1,dmats);
if (i==9999) {print(arr1,xsize,ysize);};
}
return 0;
}
I left out the implementation of the functions. The F# code I am using is
open System.Runtime.InteropServices
open Microsoft.FSharp.NativeInterop
[<DllImport("a.dll")>] extern void main (int argc, char* argv)
[<DllImport("a.dll")>] extern void setvals (int _xsize, int _ysize, int _distlimit,float _tau,float _Iex)
[<DllImport("a.dll")>] extern void MakeDmat(float We,float Wi, float*arr)
[<DllImport("a.dll")>] extern void randinit(float* arr)
[<DllImport("a.dll")>] extern void print(float* arr)
[<DllImport("a.dll")>] extern void evolve (float* input, float* output,float* connections)
let dlimit,xsize,ysize = 15,100,100
let factor = (2*dlimit)+1
setvals(xsize,ysize,dlimit,20.0,0.0504)
let dmat = Array.zeroCreate (factor*factor)
MakeDmat(1.4,-1.92,&&dmat.[0])
let arr1 = Array.zeroCreate (xsize*ysize)
let arr2 = Array.zeroCreate (xsize*ysize)
let addr1 = &&arr1.[0]
let addr2 = &&arr2.[0]
let dmataddr = &&dmat.[0]
randinit(&&dmat.[0])
[0..10000] |> List.iter (fun _ ->
evolve(addr1,addr2,dmataddr)
evolve(addr2,addr1,dmataddr)
)
print(&&arr1.[0])
The F# code is compiled with optimisations on.
Is the mono interface for calling C code really that slow (almost 8ms of overhead per function call) or am I just doing something stupid?
It looks like part of the problem is that you are using float on both the F# and C side of the PInvoke signature. In F# float is really System.Double and hence is 8 bytes. In C a float is generally 4 bytes.
If this were running under the CLR I would expect you to see a PInvoke stack unbalanced error during debugging. I'm not sure if Mono has similar checks or not. But it's possible this is related to the problem you're seeing.