Dynamic(Moving) Gestures using OpenCV - opencv

I can detect hands or colored marker using openCV but I'm stuck at recognizing dynamic gestures(eg. Moving hand to right as move right gesture). I want to recognize left, right, up, down, circle (clockwise and anticlockwise)
Can you please suggest me a way of achieving above described gestures.

Have a look at the motempl.c sample from OpenCV. It allows you to track motion history gradients.
The primary functions you will be interested in are:
updateMotionHistory
calcMotionGradient
calcGlobalOrientation
segmentMotion*
* You may not want to segment things by motion since you have an
object segmentation algorithm already...
To only track the object in which you are interested, simply preprocess the video with your object detection algorithms, and then apply motion history tracking to the detected object.
Hope that helps!

Related

Speed Tracking a moving object from another moving object

I am new to computer vision, and need some advice on where to start.
The project is to estimate speed of a moving object(A) relative to the moving object(B) which is tracking it(A).
what should I need to do if I assume-
if the background is appeared to be static(making the background single colored)
if the background is moving (harder)
I want to do this using opencv and c++
Any advice on where to start, general steps would be very appreciated. Thanks in advance!
If your camera is attached to object B, first you will have to design an algorithm to detect and track object A. A simplified algorithm can be:
Loop the steps below:
Capture video frame from the camera.
If object A was not in the previous frame, detect object A (manual initialisation, detection using known features, etc.). Otherwise, track the object using the previous position and a tracking algorithm (openCV offers quite a few).
Detect and record the current location of the object in image coordinates.
Convert the location to real world coordinates.
If previous locations and timestamps for the object were available, calculate its speed.
The best way to do this is to get started with at least a simple C++ program that captures frames from a camera, and keep adding steps for detection and tracking.

Finger/Hand Gesture Recognition using Kinect

Let me explain my need before I explain the problem.
I am looking forward for a hand controlled application.
Navigation using palm and clicks using grab/fist.
Currently, I am working with Openni, which sounds promising and has few examples which turned out to be useful in my case, as it had inbuild hand tracker in samples. which serves my purpose for time being.
What I want to ask is,
1) what would be the best approach to have a fist/grab detector ?
I trained and used Adaboost fist classifiers on extracted RGB data, which was pretty good, but, it has too many false detections to move forward.
So, here I frame two more questions
2) Is there any other good library which is capable of achieving my needs using depth data ?
3)Can we train our own hand gestures, especially using fingers, as some paper was referring to HMM, if yes, how do we proceed with a library like OpenNI ?
Yeah, I tried with the middle ware libraries in OpenNI like, the grab detector, but, they wont serve my purpose, as its neither opensource nor matches my need.
Apart from what I asked, if there is something which you think, that could help me will be accepted as a good suggestion.
You don't need to train your first algorithm since it will complicate things.
Don't use color either since it's unreliable (mixes with background and changes unpredictably depending on lighting and viewpoint)
Assuming that your hand is a closest object you can simply
segment it out by depth threshold. You can set threshold manually, use a closest region of depth histogram, or perform connected component on a depth map to break it on meaningful parts first (and then select your object based not only on its depth but also using its dimensions, motion, user input, etc). Here is the output of a connected components method:
Apply convex defects from opencv library to find fingers;
Track fingers rather than rediscover them in 3D.This will increase stability. I successfully implemented such finger detection about 3 years ago.
Read my paper :) http://robau.files.wordpress.com/2010/06/final_report_00012.pdf
I have done research on gesture recognition for hands, and evaluated several approaches that are robust to scale, rotation etc. You have depth information which is very valuable, as the hardest problem for me was to actually segment the hand out of the image.
My most successful approach is to trail the contour of the hand and for each point on the contour, take the distance to the centroid of the hand. This gives a set of points that can be used as input for many training algorithms.
I use the image moments of the segmented hand to determine its rotation, so there is a good starting point on the hands contour. It is very easy to determine a fist, stretched out hand and the number of extended fingers.
Note that while it works fine, your arm tends to get tired from pointing into the air.
It seems that you are unaware of the Point Cloud Library (PCL). It is an open-source library dedicated to the processing of point clouds and RGB-D data, which is based on OpenNI for the low-level operations and which provides a lot of high-level algorithm, for instance to perform registration, segmentation and also recognition.
A very interesting algorithm for shape/object recognition in general is called implicit shape model. In order to detect a global object (such as a car, or an open hand), the idea is first to detect possible parts of it (e.g. wheels, trunk, etc, or fingers, palm, wrist etc) using a local feature detector, and then to infer the position of the global object by considering the density and the relative position of its parts. For instance, if I can detect five fingers, a palm and a wrist in a given neighborhood, there's a good chance that I am in fact looking at a hand, however, if I only detect one finger and a wrist somewhere, it could be a pair of false detections. The academic research article on this implicit shape model algorithm can be found here.
In PCL, there is a couple of tutorials dedicated to the topic of shape recognition, and luckily, one of them covers the implicit shape model, which has been implemented in PCL. I never tested this implementation, but from what I could read in the tutorial, you can specify your own point clouds for the training of the classifier.
That being said, you did not mentioned it explicitly in your question, but since your goal is to program a hand-controlled application, you might in fact be interested in a real-time shape detection algorithm. You would have to test the speed of the implicit shape model provided in PCL, but I think this approach is better suited to offline shape recognition.
If you do need real-time shape recognition, I think you should first use a hand/arm tracking algorithm (which are usually faster than full detection) in order to know where to look in the images, instead of trying to perform a full shape detection at each frame of your RGB-D stream. You could for instance track the hand location by segmenting the depthmap (e.g. using an appropriate threshold on the depth) and then detecting the extermities.
Then, once you approximately know where the hand is, it should be easier to decide whether the hand is making one gesture relevant to your application. I am not sure what you exactly mean by fist/grab gestures, but I suggest that you define and use some app-controlling gestures which are easy and quick to distinguish from one another.
Hope this helps.
The fast answer is: Yes, you can train your own gesture detector using depth data. It is really easy, but it depends on the type of the gesture.
Suppose you want to detect a hand movement:
Detect the hand position (x,y,x). Using OpenNi is straighforward as you have one node for the hand
Execute the gesture and collect ALL the positions of the hand during the gesture.
With the list of positions train a HMM. For example you can use Matlab, C, or Python.
For your own gestures, you can test the model and detect the gestures.
Here you can find a nice tutorial and code (in Matlab). The code (test.m is pretty easy to follow). Here is an snipet:
%Load collected data
training = get_xyz_data('data/train',train_gesture);
testing = get_xyz_data('data/test',test_gesture);
%Get clusters
[centroids N] = get_point_centroids(training,N,D);
ATrainBinned = get_point_clusters(training,centroids,D);
ATestBinned = get_point_clusters(testing,centroids,D);
% Set priors:
pP = prior_transition_matrix(M,LR);
% Train the model:
cyc = 50;
[E,P,Pi,LL] = dhmm_numeric(ATrainBinned,pP,[1:N]',M,cyc,.00001);
Dealing with fingers is pretty much the same, but instead of detecting the hand you need to detect de fingers. As Kinect doesn't have finger points, you need to use a specific code to detect them (using segmentation or contour tracking). Some examples using OpenCV can be found here and here, but the most promising one is the ROS library that have a finger node (see example here).
If you only need the detection of a fist/grab state, you should give microsoft a chance. Microsoft.Kinect.Toolkit.Interaction contains methods and events that detects the grip / grip release state of a hand. Take a look at the HandEventType of InteractionHandPointer . That works quite good for the fist/grab detection, but does not detect or report the position of individual fingers.
The next kinect (kinect one) detects 3 joint per hand (Wrist, Hand, Thumb) and has 3 hand based gestures: open, closed (grip/fist) and lasso (pointer). If that is enough for you, you should consider the microsoft libraries.
1) If there are a lot of false detections, you could try to extend the negative sample set of the classifier, and train it again. The extended negative image set should contain such images, where the fist was false detected. Maybe this will help to create a better classifier.
I've had quite a bit of succes with the middleware library as provided by http://www.threegear.com/. They provide several gestures (including grabbing, pinching and pointing) and 6 DOF handtracking.
You might be interested in this paper & open-source code:
Robust Articulated-ICP for Real-Time Hand Tracking
Code: https://github.com/OpenGP/htrack
Screenshot: http://lgg.epfl.ch/img/codedata/htrack_icp.png
YouTube Video: https://youtu.be/rm3YnClSmIQ
Paper PDF: http://infoscience.epfl.ch/record/206951/files/htrack.pdf

Which edge detection algorithm in OpenCV suitable for detecting objects?

I have to make a bot which has to overcome obstacles autonomously in an arena that will be filled with rocks. The bot has to find its way through this area and reach the end point. I am thinking of using edge detector operators like canny and sobel for this problem.
I want to know whether those will be suitable options for this problem. If so, then after detecting the edges, how can I make the bot find the path, overcoming the rock obstacles?
I am using QT IDE and opencv library.
Since you will be analyzing frames of video, and the robot will be moving most of the time, image differences and optical flow too will be helpful. Edge detection alone might not help a lot, unless the surroundings and obstacles are simple and have known properties. Posting a photo of the scene can help those who want to answer the question.
Yes, canny is a very good edge detector. In fact the opencv implementation uses sobel to get the gradient estimate. You may need to apply a Gaussian filter to the image before edge detection. Edges are good features to look for rocks, but depending on the background other features such as color may also be useful. It probably would be easier if you gather 3D scene information via stereo, or laser scanner, or kinect like sensor. Also consider detecting when you bump into rocks and building up a map of where they are.
You can use contours to detect any object. You can estimate its size by finding the area of the contours. Then you can use moments to find the center of the object.

Object tracking in OpenCV

I had been using LK algorithm in detecting corners and interested point for tracking.
However, I am stucked at this point where I need to have something like a rectangle box to follow the tracked object. All I have now was just a lot of points showing my moving objects.
Is there any methods or suggestions for that? Also, any idea on adding counter into the window so that my object moving in and out the screen can be counted as well?
Thank you
There are lots of options! Within OpenCV, I'd suggest using CamShift as a starting point, since it is a relatively easy to use. CamShift uses mean shift to iteratively search for an object in consecutive frames.
Note that you need to seed the tracker with some kind of input. You could have the user draw a rectangle around the object, or use a detector to get the initial input. If you want to track faces, for example, OpenCV has a cascade classifier and training data for a face detector included.

Current state of OpenCV hand gesture recognition?

What is the current state of hand gesture recognition in OpenCV?
I have seen great examples of being able to detect hand gestures (e.g. https://www.andol.me/1661/) but recognising gestures and performing some action (e.g. manipulating on-screen objects) seems much harder.
Does anyone know of any examples?
Thanks!
I think the only support in OpenCV for hand gesture recognition is exactly what Luca Del Tongo demonstrated in the video you linked to, namely cvConvexityDefects().
You might want to extract the hand mask using color-space filtering (as suggested in the video), and using ML classifiers for detecting the actual gesture. There have been several papers that have done this, though this is not currently implemented as-such in OpenCV.
cvConvexityDefects() is the key step following the hand segmentation as done in andol.info/hci/1661.htm

Resources