Upsampling an Image - opencv

I have a basic question.
What are the advantages of upsampling an Image?
Does it help me in edge detection?
I have not found much useful information on the internet.

It depends on the image. It can help if you have extremely jagged edges. At the worst it does nothing. So, you pay in processing time for a potential improvement.

Usually we need to convert an image to a size different than its
original.
For this, there are two possible options:
Upsize the image (zoom in)
Downsize it (zoom out)
As an example, you could want to do your calculations (e.g. segmentation) on a downsized Image, later on you want to work on the original Image data again, so you upsize your Output (e.g. Segmentation mask) again.
Finding better results on upsized Images when applying edge detection
can rise from the following:
With edge detectors (e.g. canny, not only gradient computation) a blurring algorithm is usually connected. If you use some sort of blurring mask in preprocessing, it is possible that you can obtain similar behavior by its modification (decreasing, or increasing power of blurring) as in the case of image resize.

Related

Ideas to process challenging image

I'm working with Infra Red image that is an output of a 3D sensor. This sensors project a Infra Red pattern in order to draw a depth map, and, because of this, the IR image has a lot of white spots that reduce its quality. So, I want to process this image to make it smoother in order to make it possible to detect objects laying in the surface.
The original image looks like this:
My objective is to have something like this (which I obtained by blocking the IR projecter with my hand) :
An "open" morphological operation does remove some noise, but I think first there should be some noise removal operation that addresses the white dots.
Any ideas?
I should mention that the algorithm to reduce the noise has to run on real time.
A median filter would be my first attempt .... possibly followed by a Gaussian blur. It really depends what you want to do with it afterwards.
For example, here's your original image after a 5x5 median filter and 5x5 Gaussian blur:
The main difficulty in your images is the large radius of the white dots.
Median and morphologic filters should be of little help here.
Usually I'm not a big fan of these algorithms, but you seem to have a perfect use case for a decomposition of your images on a functional space with a sketch and an oscillatary component.
Basically, these algorithms aim at solving for the cartoon-like image X that approaches the observed image, and that differs from Y only through the removal of some oscillatory texture.
You can find a list of related papers and algorithms here.
(Disclaimer: I'm not Jérôme Gilles, but I know him, and I know that
most of his algorithms were implemented in plain C, so I think most of
them are practical to implement with OpenCV.)
What you can try otherwise, if you want to try simpler implementations first:
taking the difference between the input image and a blurred version to see if it emphasizes the dots, in which case you have an easy way to find and mark them. The output of this part may be enough, but you may also want to fill the previous place of the dots using inpainting,
or applying anisotropic diffusion (like the Rudin-Osher-Fatemi equation) to see if the dots disappear. Despite its apparent complexity, this diffusion can be implemented easily and efficiently in OpenCV by applying the algorithms in this paper. TV diffusion can also be used for the inpainting step of the previous item.
My main point on the noise removal was to have a cleaner image so it would be easier to detect objects. However, as I tried to find a solution for the problem, I realized that it was unrealistic to remove all noise from the image using on-the-fly noise removal algorithms, since most of the image is actually noise.. So I had to find the objects despite those conditions. Here is my aproach
1 - Initial image
2 - Background subtraction followed by opening operation to smooth noise
3 - Binary threshold
4 - Morphological operation close to make sure object has no edge discontinuities (necessary for thin objects)
5 - Fill holes + opening morphological operations to remove small noise blobs
6 - Detection
Is the IR projected pattern fixed or changes over time?
In the second case, you could try to take advantage of the movement of the dots.
For instance, you could acquire a sequence of images and assign each pixel of the result image to the minimum (or a very low percentile) value of the sequence.
Edit: here is a Python script you might want to try

is it possible to take low resolution image from street camera, increase it and see image details

I would like to know if it is possible to take low resolution image from street camera, increase it
and see image details (for example a face, or car plate number). Is there any software that is able to do it?
Thank you.
example of image: http://imgur.com/9Jv7Wid
Possible? Yes. In existence? not to my knowledge.
What you are referring to is called super-resolution. The way it works, in theory, is that you combine multiple low resolution images, and then combine them to create a high-resolution image.
The way this works is that you essentially map each image onto all the others to form a stack, where the target portion of the image is all the same. This gets extremely complicated extremely fast as any distortion (e.g. movement of the target) will cause the images to differ dramatically, on the pixel level.
But, let's you have the images stacked and have removed the non-relevant pixels from the stack of images. You are left hopefully with a movie/stack of images that all show the exact same image, but with sub-pixel distortions. A sub-pixel distortion simply means that the target has moved somewhere inside the pixel, or has moved partially into the neighboring pixel.
You can't measure if the target has moved within the pixel, but you can detect if the target has moved partially into a neighboring pixel. You can do this by knowing that the target is going to give off X amount of photons, so if you see 1/4 of the photons in one pixel and 3/4 of the photons in the neighboring pixel you know it's approximate location, which is 3/4 in one pixel and 1/4 in the other. You then construct an image that has a resolution of these sub-pixels and place these sub-pixels in their proper place.
All of this gets very computationally intensive, and sometimes the images are just too low-resolution and have too much distortion from image to image to even create a meaningful stack of images. I did read a paper about a lab in a university being able to create high-resolution images form low-resolution images, but it was a very very tightly controlled experiment, where they moved the target precisely X amount from image to image and had a very precise camera (probably scientific grade, which is far more sensitive than any commercial grade security camera).
In essence to do this in the real world reliably you need to set up cameras in a very precise way and they need to be very accurate in a particular way, which is going to be expensive, so you are better off just putting in a better camera than relying on this very imprecise technique.
Actually it is possible to do super-resolution (SR) out of even a single low-resolution (LR) image! So you don't have to hassle taking many LR images with sub-pixel shifts to achieve that. The intuition behind such techniques is that natural scenes are full of many repettitive patterns that can be use to enahance the frequency content of similar patches (e.g. you can implement dictionary learning in your SR reconstruction technique to generate the high-resolution version). Sure the enhancment may not be as good as using many LR images but such technique is simpler and more practicle.
Photoshop would be your best bet. But know that you cannot reliably inclrease the size of an image without making the quality even worse.

Water Edge Detection

Is there a robust way to detect the water line, like the edge of a river in this image, in OpenCV?
(source: pequannockriver.org)
This task is challenging because a combination of techniques must be used. Furthermore, for each technique, the numerical parameters may only work correctly for a very narrow range. This means either a human expert must tune them by trial-and-error for each image, or that the technique must be executed many times with many different parameters, in order for the correct result to be selected.
The following outline is highly-specific to this sample image. It might not work with any other images.
One bit of advice: As usual, any multi-step image analysis should always begin with the most reliable step, and then proceed down to the less reliable steps. Whenever possible, the less reliable step should make use of the result of more-reliable steps to augment its own accuracy.
Detection of sky
Convert image to HSV colorspace, and find the cyan located at the upper-half of the image.
Keep this HSV image, becuase it could be handy for the next few steps as well.
Detection of shrubs
Run Canny edge detection on the grayscale version of image, with suitably chosen sigma and thresholds. This will pick up the branches on the shrubs, which would look like a bunch of noise. Meanwhile, the water surface would be relatively smooth.
Grayscale is used in this technique in order to reduce the influence of reflections on the water surface (the green and yellow reflections from the shrubs). There might be other colorspaces (or preprocessing techniques) more capable of removing that reflection.
Detection of water ripples from a lower elevation angle viewpoint
Firstly, mark off any image parts that are already classified as shrubs or sky. Since shrub detection would be more reliable than water detection, shrub detection's result should be used to inform the less-reliable water detection.
Observation
Because of the low elevation angle viewpoint, the water ripples appear horizontally elongated. In fact, every image feature appears stretched horizontally. This is called Anisotropy. We could make use of this tendency to detect them.
Note: I am not experienced in anisotropy detection. Perhaps you can get better ideas from other people.
Idea 1:
Use maximally-stable extremal regions (MSER) as a blob detector.
The Wikipedia introduction appears intimidating, but it is really related to connected-component algorithms. A naive implementation can be done similar to Dijkstra's algorithm.
Idea 2:
Notice that the image features are horizontally stretched, a simpler approach is to just sum up the absolute values of horizontal gradients and compare that to the sum of absolute values of vertical gradients.

What is the correct method to auto-crop objects from light background?

I'm trying to extract objects from scanned images. There could be a few documents on a white background, and I need to crop and rotate them automatically. This seems like a rather simple task, but I've got stuck at some point and get bad results all the time.
I've tried to:
Binarise the image and get connected components by performing morphological operations.
Perform watershed segmentation by using dilated and eroded binary images as mask components.
Apply Canny detector and fill the contours.
None of this gets me good results. If the object does't have contrast edges (i.e a piece of paper on white background), it splits into a lot of separate components. If I connect these components by applying excessive dilation, background noise also expands and everything becomes a mess.
For example, I have an image:
After applying Canny detector and filling the contours I get something like this:
As you can see, the components are not connected. They are eve too far from each other to be connected by a reasonable amount of dilation. And when I apply watershed to this mask combined with some background points, it yields very bad results.
Some images are noisy:
In this particular case I was able to obtain contour of the whole passport by Canny detector because of it's contrast edges. But threshold method doesn't work here.
If the images are always on a very light background, then you can binarize with a threshold close to the maximum possible value. After that it is a matter of correcting the binary image to get the objects, but this step will vary depending on how your other images look like.
For instance, the following image at left is what we get with a threshold at 99% of the maximum value after a gaussian filtering on the input. After removing components connected to the border and other small components, and also combining with some basic morphological tools, we get the image at right.
This may seem a bit wishy-washy but bear with me:
This looks like quite a challenging case for image processing recipes involving only edge detection, morphological operations and segmentation.
What you are not exploiting here is that you (I believe) know what your document should look like. You are currently looking at completely general solutions which do not take into account this prior knowledge. If you can get some training data then you can go all the way from simple template/patch-based matching (SSD, Normalized Cross-Correlation) to more sophisticated object detection techniques to find the position and rotation of your documents.
My guess is that if your objects are always more or less the same and at the same scale (e.g. passports scanned at a fixed resolution/similar machines) then you can get away with a fairly crude approach. There won't be any one correct method. It's also likely that the technique you end up using will not work until you have done a significant amount of parameter tweaking, so don't give up on anything too quickly.

Is it possible to detect blur, exposure, orientation of an image programmatically?

I need to sort a huge number of photos, and remove the blurry images (due to camera shake), the over/under exposed ones and detect whether the image was shot in the landscape or portrait orientation. Can these things be done on an image using an image processing library or are they still beyond the realms of an algorithmic solution ?
Let's look at your question as three separate question.
Can I find blurry images?
There are some methods for finding blurry images either from :
Sharpening an image and comparing it to the original
Using wavelets to detect blurring ( Link1 )
Hough Transform ( Link )
Can I find images that are under or over exposed?
The only way I can think of this is that your overall brightness is either really high or really low. But the problem is that you would have know if the picture was taken at night or day. You could create a histogram of your image and see if it is really skewed one way or the other and that might be some indication of over/under exposure.
Can I determine the orientation of the image?
There are techniques that have been used such as SVM, Color Moments, Edge Direction Histograms, Bayesian Framework using cues.
Can I find images that are under or over exposed?
here histograms is recommended.

Resources