fastest image processing library? - image-processing

I'm working on robot vision system and its main purpose is to detect objects, i want to choose one of these libraries (CImg , OpenCV) and I have knowledge about both of them.
The robot I'm using has Linux , 1GHz CPU and 1G ram and I'm using C++ the size of image is 320p.
I want to have a real-time image processing near 20 out of 25 frames per seconds.
In your opinion which library is more powerful l although I have tested both and they have the same process time, open cv is slightly better and I think that's because I use pointers with open cv codes.
Please share your idea and your reason.
thanks.

I think you can possibly get best performance when you integrated - OpenCV with IPP.
See this reference, http://software.intel.com/en-us/articles/intel-integrated-performance-primitives-intel-ipp-open-source-computer-vision-library-opencv-faq/
Here is another reference http://experienceopencv.blogspot.com/2011/07/speed-up-with-intel-integrated.html
Further, if you freeze the algorithm that works perfectly, usually you can isolate your algorithm and work your way towards doing serious optimization (such as memory optimization, porting to assembly etc.) which might not be ready to use.

It really depends on what you want to do (what kind of objects you want to detect, accuracy, what algorithm you are using etc..) and how much time you have got. If it is for generic computer vision/image processing, I would stick with OpenCV. As Dipan said, do consider further optimization. In my experience with optimization for Computer Vision, the bottleneck usually is in memory interconnect bandwidth (or memory itself) and so you might have to trade in cycles (computation) to save on communication. Do understand the algorithm really well to further optimize the algorithm (which at times can give huge improvements as compared to compilers).

Related

Can I use drake to test Visual SLAM algorithms?

I was wondering whether I could leverage the modularity drake gives to test Visual SLAM algorithms on realtime data. I would like to create 3 blocks that output acceleration, angular speed, and RGBD data. The blocks should pull information from a real sensor. Another block would process the data and produce the current transform of the camera and a global map. Effectively, I would like to cast my problem into a "Systems" framework so I can easily add filters where I need them.
My question is: Given other people's experience with this library, is Drake the right tool for the job for this usecase? Specifically, can I use this library to process real time information in a production setting?
Visual SLAM is not a use case I've implemented myself, but I believe the Drake Systems framework should be up to the task, depending on what you mean by "realtime".
We definitely ship RGBD data through the framework often.
We haven't made any attempt to support running Drake in hard realtime, but certainly can run at high rates. If you were to hit a performance bottleneck, we tend to be pretty responsive and would welcome PRs.
As for the "production-level", it is certainly our intention for the code / process to be mature enough for that setting, and numerous teams do already.

If a computer can be Turing complete with one instruction what is the purpose of having many instructions?

I understand the concept of a computer being Turing complete ( having a MOV or command or a SUBNEG command and being able to therefore "synthesize" other instructions such as ). If that is true what is the purpose of having 100s of instructions like x86 has for example? Is to increase efficiency?
Yes.
Equally, any logical circuit can be made using just NANDs. But that doesn't make other components redundant. Crafting a CPU from NAND gates would be monumentally inefficient, even if that CPU performed only one instruction.
An OS or application has a similar level of complexity to a CPU.
You COULD compile it so it just used a single instruction. But you would just end up with the world's most bloated OS.
So, when designing a CPU's instruction set, the choice is a tradeoff between reducing CPU size/expense, which allows more instructions per second as they are simpler, and smaller size means easier cooling (RISC); and increasing the capabilities of the CPU, including instructions that take multiple clock-cycles to complete, but making it larger and more cumbersome to cool (CISC).
This tradeoff is why math co-processors were a thing back in the 486 days. Floating point math could be emulated without the instructions. But it was much, much faster if it had a co-processor designed to do the heavy lifting on those floating point things.
Remember that a Turing Machine is generally understood to be an abstract concept, not a physical thing. It's the theoretical minimal form a computer can take that can still compute anything. Theoretically. Heavy emphasis on theoretically.
An actual Turing machine that did something so simple as decode an MP3 would be outrageously complicated. Programming it would be an utter nightmare as the machine is so insanely limited that even adding two 64-bit numbers together and recording the result in a third location would require an enormous amount of "tape" and a whole heap of "instructions".
When we say something is "Turing Complete" we mean that it can perform generic computation. It's a pretty low bar in all honesty, crazy things like the Game of Life and even CSS have been shown to be Turing Complete. That doesn't mean it's a good idea to program for them, or take them seriously as a computational platform.
In the early days of computing people would have to type in machine codes by hand. Adding two numbers together and storing the result is often one or two operations at most. Doing it in a Turing machine would require thousands. The complexity makes it utterly impractical on the most basic level.
As a challenge try and write a simple 4-bit adder. Then if you've successfully tackled that, write a 4-bit multiplier. The complexity ramps up exponentially once you move to things like 32 or 64-bit values, and when you try and tackle division or floating point values you're quickly going to drown in the outrageousness of it all.
You don't tell the CPU which transistors to flip when you're typing in machine code, the instructions act as macros to do that for you, but when you're writing Turing Machine code it's up to you to command it how to flip each and every single bit.
If you want to learn more about CPU history and design there's a wealth of information out there, and you can even implement your own using transistor logic or an FPGA kit where you can write it out using a higher level design language like Verilog.
The Intel 4004 chip was intended for a calculator so the operation codes were largely geared towards that. The subsequent 8008 built on that, and by the time the 8086 rolled around the instruction set had taken on that familiar x86 flavor, albeit a 16-bit version of same.
There's an abstraction spectrum here between defining the behaviour of individual bits (Turing Machine) and some kind of hypothetical CPU with an instruction for every occasion. RISC and CISC designs from the 1980s and 1990s differed in their philosophy here, where RISC generally had fewer instructions, CISC having more, but those differences have largely been erased as RISC gained more features and CISC became more RISC-like for the sake of simplicity.
The Turing Machine is the "absolute zero" in terms of CPU design. If you can come up with something simpler or more reductive you'd probably win a prize.

Is CGPathContainsPoint() hardware accelerated?

I'm doing an iOS game and would like to use this method for collision detection.
As there are plenty (50+) of points to check every frame, I wondered if this method runs on the iDevice's graphics hardware.
Following up on #DavidRönnqvist point: it doesn't matter if it's "hardware accelerated" or not. What matters is whether it is fast enough for your purpose, and then you can use Instruments to check where it is eating time and try to improve things.
Moving code to the GPU doesn't automatically make it faster; it can in fact make it much slower since you have to haul all the data over to GPU memory, which is expensive. Ideally to run on the GPU, you want to move all the data once, then do lots of expensive vector operations, and then move the data back (or just put it on the screen). If you can't make the problem look like that, then the GPU isn't the right tool.
It is possible that it is NEON accelerated, but again that's kind of irrelevant; the compiler NEON-accelerates lots of things (and running on the NEON doesn't always mean it runs faster, either). That said, I'd bet this kind of problem would run best on the NEON if you can test lots of points (hundreds or thousands) against the same curves.
You should assume that CGPathContainsPoint() is written to be pretty fast for the general case of "I have one random curve and one random point." If your problem looks like that, it seems unlikely that you will beat the Apple engineers on their own hardware (and 50 points isn't much more than 1). I'd assume, for instance, that they're already checking the bounding box for you and that your re-check is wasting time (but I'd profile it to be sure).
But if you can change the problem to something else, like "I have a known curve and tens of thousands of points," then you can probably hand-code a better solution and should look at Accelerate or even hand-written NEON to attack it.
Profile first, then optimize. Don't assume that "vector processor" is exactly equivalent to "fast" even when your problem is "mathy." The graphics processor even more-so.

Is it practical to include an adaptive or optimizing memory strategy into a library?

I have a library that does I/O. There are a couple of external knobs for tuning the sizes of the memory buffers used internally. When I ran some tests I found that the sizes of the buffers can affect performance significantly.
But the optimum size seems to depend on a bunch of things - the available memory on the PC, the the size of the files being processed (varies from very small to huge), the number of files, the speed of the output stream relative to the input stream, and I'm not sure what else.
Does it make sense to build an adaptive memory strategy into the library? or is it better to just punt on that, and let the users of the library figure out what to use?
Has anyone done something like this - and how hard is it? Did it work?
Given different buffer sizes, I suppose the library could track the time it takes for various operations, and then it could make some decisions about which size was optimal. I could imagine having the library rotate through various buffer sizes in the initial I/O rounds... and then it eventually would do the calculations and adjust the buffer size in future rounds depending on the outcomes. But then, how often to re-check? How often to adjust?
The adaptive approach is sometimes referred to as "autonomic", using the analogy of a Human's autonomic nervous system: you don't conciously control your heart rate and respiration, your autonomic nervous system does that.
You can read about some of this here, and here (apologies for the plugs, but I wanted to show that the concept is being taken seriously, and is manifesting in real products.)
My experience of using products that try to do this is that they do acually work, but can make me unhappy: that's because there is a tendency for them to take a "Father knows best" approach. You make some (you believe) small change to your app, or the environment and something unexecpected happens. You don't know why, and you don't know if it's good. So my rule for autonomy is:
Tell me what you are doing and why
Now sometimes the underlying math is quite complex - consider that some autonomic systems are trending and hence making predictive changes (number of requests of this type growing, let's provision more of resource X) so the mathematical models are non-trivial. Hence simple explanations are not always available. However some level of feedback to the watching humans can be reassuring.

Fastest method to compute convolution

I have to apply a convolution filter on each row of many images. The classic is 360 images of 1024x1024 pixels. In my use case it is 720 images 560x600 pixels.
The problem is that my code is much slower than what is advertised in articles.
I have implemented the naive convolution, and it takes 2m 30s. I then switched to FFT using fftw. I used complex 2 complex, filtering two rows in each transform. I'm now around 20s.
The thing is that articles advertise around 10s and even less for the classic condition.
So I'd like to ask the experts here if there could be a faster way to compute the convolution.
Numerical recipes suggest to avoid the sorting done in the dft and adapt the frequency domain filter function accordingly. But there is no code example how this could be done.
Maybe I lose time in copying data. With real 2 real transform I wouldn't have to copy the data into the complexe values. But I have to pad with 0 anyway.
EDIT: see my own answer below for progress feedback and further information on solving this issue.
Question (precise reformulation):
I'm looking for an algorithm or piece of code to apply a very fast convolution to a discrete non periodic function (512 to 2048 values). Apparently the discrete time Fourier transform is the way to go. Though, I'd like to avoid data copy and conversion to complex, and avoid the butterfly reordering.
FFT is the fastest technique known for convolving signals, and FFTW is the fastest free library available for computing the FFT.
The key for you to get maximum performance (outside of hardware ... the GPU is a good suggestion) will be to pad your signals to a power of two. When using FFTW use the 'patient' setting when creating your plan to get the best performance. It's highly unlikely that you will hand-roll a faster implementation than what FFTW provides (forget about N.R.). Also be sure to be using the Real version of the forward 1D FFT and not the Complex version; and only use single (floating point) precision if you can.
If FFTW is not cutting it for you, then I would look at Intel's (very affordable) IPP library. The have hand tuned FFT's for Intel processors that have been optimized for images with various bit depths.
Paul
CenterSpace Software
You may want to add image processing as a tag.
But, this article may be of interest, esp with the assumption the image is a power or 2. You can also see where they optimize the FFT. I expect that the articles you are looking at made some assumptions and then optimized the equations for those.
http://www.gamasutra.com/view/feature/3993/sponsored_feature_implementation_.php
If you want to go faster you may want to use the GPU to actually do the work.
This book may be helpful for you, if you go with the GPU:
http://www.springerlink.com/content/kd6qm361pq8mmlx2/
This answer is to collect progress report feedback on this issue.
Edit 11 oct.:
The execution time I measured doesn't reflect the effective time of the FFT. I noticed that when my program ends, the CPU is still busy in system time up to 42% for 10s. When I wait until the CPU is back to 0%, before restarting my program I then get the 15.35s execution time which comes from the GPU processing. I get the same time if I comment out the FFT filtering.
So the FFT is in fact currently faster then the GPU and was simply hindered by a competing system task. I don't know yet what this system task is. I suspect it results from the allocation of a huge heap block where I copy the processing result before writing it to disk. For the input data I use a memory map.
I'll now change my code to get an accurate measurement of the FFT processing time. Making it faster is still actuality because there is room to optimize the GPU processing like for instance by pipelining the transfer of data to process.

Resources