What program is modeled in this diagram?
According to Pylon's documentation, that's
The Pyramid traversal algorithm. We’ll provide a description of the algorithm, a diagram of how the algorithm works, and some example traversal scenarios that might help you understand how the algorithm operates against a specific resource tree
In the above link there's a clear description of the algorithm, and here it is the implementation, in Python.
Related
According to this Wikipedia article Feature Extraction examples for Low-Level algorithms are Edge Detection, Corner Detection etc.
But what are High-Level algorithms?
I only found this quote from the Wikipedia article Feature Detection (computer vision):
Occasionally, when feature detection is computationally expensive and there are time constraints, a higher level algorithm may be used to guide the feature detection stage, so that only certain parts of the image are searched for features.
Could you give an example of one of these higher level algorithms?
There isn't a clear cut definition out there, but my understanding of "high-level" algorithms are more in tune with how we classify objects in real life. For low-level feature detection algorithms, these are mostly concerned with finding corresponding points between images, or finding those things that classify as something even remotely interesting at the lowest possible level you can think of - things like finding edges or lines in an image (in addition to finding interesting points of course). In addition, anything dealing with pixel intensities or colours directly is what I would consider low-level too.
High-level algorithms are mostly in the machine learning domain. These algorithms are concerned with the interpretation or classification of a scene as a whole. Things like body pose classification, face detection, classification of human actions, object detection and recognition and so on. These algorithms are concerned with training a system to recognize or classify something, then you provide it some unknown input that it has never seen before and its job is to either determine what is happening in the scene, or locate a region of interest where it detects an action that the system is trained to look for. This latter fact is probably what the Wikipedia article is referring to. You would have some sort of pre-processing stage where you have some high-level system that determines salient areas in the scene where something important is happening. You would then apply low-level feature detection algorithms in this localized area.
There is a great high-level computer vision workshop that talks about all of this, and you can find the slides and code examples here: https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/teaching/courses/ss-2019-high-level-computer-vision/
Good luck!
High-level features are something that we can directly see and recognize, like object classification, recognition, segmentation and so on. These are usually the goal of CV research, which is always based on 'low-level' features and algorithms.
Two of them are used in machine specially x-ray machine
Concerned Scene as a whole and edges of lines to help soft ware of machine to take good decision.
I think we should not confuse with high-level features and high-level inference. To me, high-level features mean shape, size, or a combination of low-level features etc. are the high-level features. While classification is the decision made based on the high-level features.
Dear all I am working on a project in which I have to categories research papers into their appropriate fields using titles of papers. For example if a phrase "computer network" occurs somewhere in then title then this paper should be tagged as related to the concept "computer network". I have 3 million titles of research papers. So I want to know how I should start. I have tried to use tf-idf but could not get actual results. Does someone know about a library to do this task easily? Kindly suggest one. I shall be thankful.
If you don't know categories in advance, than it's not classification, but instead clustering. Basically, you need to do following:
Select algorithm.
Select and extract features.
Apply algorithm to features.
Quite simple. You only need to choose combination of algorithm and features that fits your case best.
When talking about clustering, there are several popular choices. K-means is considered one of the best and has enormous number of implementations, even in libraries not specialized in ML. Another popular choice is Expectation-Maximization (EM) algorithm. Both of them, however, require initial guess about number of classes. If you can't predict number of classes even approximately, other algorithms - such as hierarchical clustering or DBSCAN - may work for you better (see discussion here).
As for features, words themselves normally work fine for clustering by topic. Just tokenize your text, normalize and vectorize words (see this if you don't know what it all means).
Some useful links:
Clustering text documents using k-means
NLTK clustering package
Statistical Machine Learning for Text Classification with scikit-learn and NLTK
Note: all links in this answer are about Python, since it has really powerful and convenient tools for this kind of tasks, but if you have another language of preference, you most probably will be able to find similar libraries for it too.
For Python, I would recommend NLTK (Natural Language Toolkit), as it has some great tools for converting your raw documents into features you can feed to a machine learning algorithm. For starting out, you can maybe try a simple word frequency model (bag of words) and later on move to more complex feature extraction methods (string kernels). You can start by using SVM's (Support Vector Machines) to classify the data using LibSVM (the best SVM package).
The fact, that you do not know the number of categories in advance, you could use a tool called OntoGen. The tool basically takes a set of texts, does some text mining, and tries to discover the clusters of documents. It is a semi-supervised tool, so you must guide the process a little, but it does wonders. The final product of the process is an ontology of topics.
I encourage you, to give it a try.
This is a research question not a direct programming question.
I am working on a symbol recognition algorithm, What the software currently does, it takes an image, divide it into contours (blobs) and start matching each contour with a list of predefined templates. Then for each contour it takes the one that has the highest match rate.
The algorithm is doing fairely however I need to train it better. What I mean is this:
I want to use a machine learning algorithm that will train the algorithm to have better matching. So lets take an example:
I run the recognition on a symbol, the algorithm will run and find that this symbol is a car, then I have to confirm that result (maybe by clicking on "Yes" or "No") the algorithm should learn from that. So if I click on NO the algorithm should learn that this is not a car and will have better result next time (maybe try to match something else). while if i click on YES he will know that he was correct and next time he will perform better when searching for a car.
This is the concept I am trying to research. I need documents or algorithm that can achieve this sort of things. I am not looking for implementations or programming, just concept or researches.
I have done many researches and read a lot about machine learning, neural networks, decision trees.... but i was not able to know how can I use any in my scenarion.
I hope I was clear and this type of question is allowed on stack overflow. if not I'm sorry
Thanks a lot for any help or tip
Image recognition is still a challenge in the community. What you described in your process of manually clicking yes/no is just creating labeled data. Since this is a very broad area, I will just point you to a few links that might be useful.
To get start, you might want to use some existing image databases instead of creating your own, which saves you a lot of effort. e.g., this car dataset in UCIC image db.
Since you already have the background of machine learning, you can take a look at some survey paper that exactly match your project interests, e.g., search object recognition survey paper or feature extraction car in google.
Then you can dive into some good papers and see whether they are suitable for your project. For example, you can check the two papers below that linked with the UCIC image db.
Shivani Agarwal, Aatif Awan, and Dan Roth,
Learning to detect objects in images via a sparse, part-based representation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(11):1475-1490, 2004.
Shivani Agarwal and Dan Roth,
Learning a sparse representation for object detection.
In Proceedings of the Seventh European Conference on Computer Vision, Part IV, pages 113-130, Copenhagen, Denmark, 2002.
Also check for some implemented softwares instead of starting from scratch, in your case, opencv should be good one to start with.
For image recognition, feature extraction is one of the most important step. You might want to check some stat-of-the-art algorithms in the community. (SIFT, mean-shift, harr features etc).
Boosting algorithm might also be useful when you reach the classification step. I see a lot of scholars mention this in image recognition community.
As #nickbar suggest, discuss more at https://stats.stackexchange.com/
I want to learn General SVM implementation which uses QP problem for training. Initially I do not want to learn Sequential minimal Optimization(SMO) kind of algorithm which over comes the QP matrix size issue. Can any one please give me some references to learn Pure General SVM implementation in any programming languages like C,C++ or Java. So that I can understand basic issues in SVM and it will help me in learning some other SVM optimized algorithms.
This blog post by Mathieu Blondel explains how to solve the SVM problem both with and without kernels using a generic QP solver in Python (in this case he is using CVXOPT).
The source code is published on this gist and is very simple to understand thanks to the numpy array notation for n-dimensional arrays (in this case, mostly 2D matrices and 1D vectors).
You could check some of the resources mentioned here. It is also advisable to have a look at the existing code. One of the most popular implementations, LIBSVM, is open-source, so you can study the implementation.
Are there any Artificial Intelligence algorithms which can be applied to improve Document Clustering results? The algorithm for clustering can be hierarchical or any other.
Thank You
The Wikipedia article on document clustering includes a link to a 2007 paper by Nicholas Andrews and Edward Fox from Virginia Tech called "Recent Developments in Document Clustering". I'm not sure specifically what you would class as an "Artificial Intelligence algorithm" but scanning the paper's contents shows that they look at vector space models, extensions to kmeans, generative algorithms, spectral clustering, dimensionality reduction, phase-based models, and comparative analysis. It's a pretty mathematically dense treatment but they are careful to include references to the algorithms they talk about.
Clustering is indeed a type of problem in the AI domain. And if you want to go one level down you may say it is in the Machine Learning field. In this sense AI does not improve document clustering, but solves it! Dumbledad mentions some basic alternatives but the type of data you have each time may be treated better with different algorithm. There are a lot of k-means based approaches for the problem. Careful seeding is needed in such a case. Spherical k-means (search for the paper of Dhillon) is a simple and standard approach. Other extensions are k-synthetic prototypes.
Subspace clustering is also a good try and in general if you want to go further than "document clustering" literature check for "clustering in high dimensional and sparse data spaces".