Professional Object Tracking Solution - image-processing

I want to build a video based tracking software. I can manage the control and display quite easily but the actual object tracking in a video stream is very difficult (color tracking is not an option).
Solutions like openCV would probably require a very long learning curve which I can't afford ATM.
Are there professional packages which expose a simple API for object tracking? C# and C++ are the preferred languages but other would be fine as well. Price is also less of an issue.

Computer Vision System Toolbox for MATLAB provides tracking functionality. Please check out the following examples:
Tracking a face
Tracking multiple objects
Generally, a lot depends on the specific problem you are trying to solve. Is the camera moving or stationary? Do you need to track a single object or multiple objects? Does your object have a distinctive color or texture? Does your object move in some predictable way?

Use OpenTLD. It tracks almost anything, but at a time, track only one thing. And code is in matlab.

Related

How to track Fast Moving Objects?

I'm trying to create an application that will be able to track rapidly moving objects in video/camera feed, however have not found any CV/DL solution that is good enough. Can you recommend any computer vision solution for tracking fast moving objects on regular laptop computer and web cam? A demo app would be ideal.
For example see this video where the tracking is done in hardware (I'm looking for software solution) : https://www.youtube.com/watch?v=qn5YQVvW-hQ
Target tracking is a very difficult problem. In target tracking you will have two main issues: the motion uncertainty problem, and the origin uncertainty problem. The first one refers to the way you model object motion so you can predict its future state, and the second refers to the issue of data association(what measurement corresponds to what track, and the literature is filled with scientific ways in which this issue can be approached).
Before you can come up with a solution to your problem you will have to answer some questions yourself, regarding the tracking problem you want to solve. For example: what are the values that you what to track(this will define your state vector), how are those values related to one another, are you trying to perform single object tracking or multiple object tracking, how are the objects moving( do they have a relatively constant acceleration or velocity ) or not, do objects make turns, can objects also be occluded or not and so on.
The Kalman Filter is good solution to predict the next state of your system (once you have identified your process model). A deep learning alternative to the Kalman filter is the so called Deep Kalman Filter which essentially is used to do the same thing. In case your process or measurement models are not linear, you will have to linearize them before predicting the next state. Some solutions that deal with non-linear process or measurement models are the Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF).
Now related to fast moving objects, an idea you can use is to have a larger covariance matrix since the objects can move a lot more if they are fast, so the search space for the correct association has to be a bit larger. Additionally you can use multiple motion models in case your motion model cannot be satisfied with only one model.
In case of occlusions I will leave you this stack overflow thread, where I have given an answer covering more details regarding occlusion handling in case of tracking. I have added some references for you to read. You will have to provide more details in your question, if you would like to receive more information regarding a solution (for example you should define fast moving objects with respect to camera frame rate).
I personally do not think there is a silver bullet solution for the tracking problem, I prefer to tailor a solution to the problem I am trying to solve.
The tracking problem is complicated. It is also more in the realm of control systems than computer vision. It would be also helpful to know more about your situation, as the performance of the chosen method pretty much depends on your problem constraints. Are you interested in real-time tracking? Are you trying to reconstruct an existing trajectory? Are there multiple targets? Just one? Are the physical properties of the targets (i.e. velocity, direction, acceleration) constant?
One of the most basic tracking methods is implemented by a Linear Dynamic System (LDS) description, in concrete, a discrete implementation, since we’re working with discrete frames of information. This method is purely based on physics, and its prediction is very sensitive. Depending on your application, the error rate could be acceptable… or not.
A more robust solution is Kalman’s Filter, and it is pretty much the go-to answer when tracking is needed. It implements prediction based on all the measurements obtained so far during the model's lifetime. It mainly works on constant-based measurements (velocity and acceleration) although it can be extended to handle non-constant models. If you are working with targets that won't exhibit a drastic change in their velocity, this is what you (probably) should implement.
I'm sorry I can't provide you with more, but the topic is pretty extensive and, admittedly, the details are beyond my area of expertise. Hopefully, this info should give you a little bit of context for finding a solution.
The problem of tracking fast-moving objects (FMO) is a known research topic in computer vision. FMOs are defined as objects which move over a distance larger than their size in one video frame. The solutions which have been proposed use classical image processing and energy minimization to establish their trajectories and sharp appearance.
If you need a demo app, I would suggest this GitHub repository: https://github.com/rozumden/fmo-cpp-demo. The demo is written in OpenCV/C++ and runs in real-time. The authors also provide a mobile app version, which is still in testing mode. Using this demo app you can track any fast moving objects in real-time without even providing an object model. However, if you provide object size in real-world units, the app can also estimate object speed.
A more sophisticated algorithm is open-sourced here: https://github.com/rozumden/deblatting_python, written in Python and PyTorch for speed-up. The repository contains a solution to the deblatting (deblurring and matting) problem, exactly what happens when a Fast Moving Object appears in front of a camera.

Is ARCore object recognition possible?

My goal is to overlay material/texture on a physical object (it would be an architectural model) that I would have an identical 3d model of. The model would be static (on a table if that helps), but I obviously want to look at the object from any side. The footprint area of my physical models would tend to be no smaller than 15x15cm and could be as large as 2-3m^2, but I would be willing to change the size of the model to work with ARCore's capability.
I know ARCore is mainly designed to anchor digital objects to flat horizontal planes. My main question is, in its current state, is it capable of accompliahing my end goal? If i have this right, it would record physical point cloud data and attempt to match it to point cloud data of my digital model, then overlapping the two on the phone screen?
If that really isn't what ARCore is for, is there an alternative that I should be focusing on? In my head this sounded fairly straightforward, but I'm sure I'll get way out of my depth if I go about it an inefficient way. Speaking of depth, I would prefer not to use a depth sensor, since my target devices are phones.
I most definitely hope that it will be possible in the future - after all an AR toolkit without Computer Vision is not that helpful.
Unfortunately, according to the ARCore employee Ian, this is currently not directly supported but you could try to access the pixels via glReadPixels and then use OpenCV with these image bytes.
Quote from Ian:
I can't speak to future plans, but I agree that it's a desirable
capability. Unfortunately, my understanding is that current Android
platform limitations prevent providing a single buffer that can be
used as both a GPU texture and CPU-accessible image, so care must be
taken in providing that capability.
Updated: 25 September, 2022.
At the moment there's still no 3D Object Recognition API in ARCore 1.33.
But... You can use ML Kit framework and Augmented Images API (ARCore 1.2+) for some tasks.
According to Google documentation, you can use ARCore as input for Machine Learning models.

Using Augmented Reality libraries for Academic Project

I'm planning on doing my Final Year Project of my degree on Augmented Reality. It will be using markers and there will also be interaction between virtual objects. (sort of a simulation).
Do you recommend using libraries like ARToolkit, NyARToolkit, osgART for such project since they come with all the functions for tracking, detection, calibration etc? Will there be much work left from the programmers point of view?
What do you think if I use OpenCV and do the marker detection, recognition, calibration and other steps from scratch? Will that be too hard to handle?
I don't know how familiar you are with image or video processing, but writing a tracker from scratch will be very time-consuming if want it to return reliable results. The effort also depends on which kind of markers you plan to use. Artoolkit e.g. compares the marker's content detected from the video stream to images you earlier defined as markers. Hence it tries to match images and returns a value of probability that a certain part of the video stream is a predefined marker. Depending on the threshold you are going to use and the lighting situation, markers are not always recognized correctly. Then there are other markers like datamatrix, qrcode, framemarkers (used by QCAR) that encode an id optically. So there is no image matching required, all necessary data can be retrieved from the video stream. Then there are more complex approaches like natural feature tracking, where you can use predefined images, given that they offer enough contrast and points of interest so they can be recognized later by the tracker.
So if you are more interested in the actual application or interaction than in understanding how trackers work, you should base your work on an existing library.
I suggest you to use OpenCV, you will find high quality algorithms and it is fast. They are continuously developing new methods so soon it will be possible to run it real-time in mobiles.
You can start with this tutorial here.
Mastering OpenCV with Practical Computer Vision Projects
I did the exact same thing and found Chapter 2 of this book immensely helpful. They provide source code for the marker tracking project and I've written a framemarker generator tool. There is still quite a lot to figure out in terms of OpenGL, camera calibration, projection matrices, markers and extending it, but it is a great foundation for the marker tracking portion.

GUI version of OpenCV for feature-detection (SIFT etc.) prototyping before actual project development?

I had an idea for which I need to be able to recognize certain objects or models from a rendered three dimensional digital movie.
After limited research, I know now that what I need is called feature detection in the field of Computer Vision.
So, what I want to do is:
create a few screenshots of a certain character in the movie (eg. front/back/leftSide/rightSide)
play the movie
while playing the movie, continuously create new screenshots of the movie
for each screenshot, perform feature detection (SIFT?, with openCV?) to see if any of our character appearances are there (they must still be recognized if the character is further away and thus appears smaller, or if the character is eg. lying down).
give a notice whenever the character is found
This would be possible with OpenCV, right?
The "issue" is that I would have to learn c++ or python to develop this application. This is not a problem if my movie and screenshots are applicable for what I want to do.
So, I would like to first test my screenshots of the movie. Is there a GUI version of OpenCV that I can input my test data and then execute it's feature detection algorithms manually as a means of prototyping?
Any feedback is appreciated. Thanks.
There is no GUI of OpenCV able to do what you want. You will be able to use OpenCV for some aspects of your problem, but there is no ready-made solution waiting there for you.
While it's definitely possible to solve your problem, the learning curve for this problem is quite long. If you're a professional, then an alternative to learning about it yourself would be to hire an expert to do it for you. It would cost money, but save you time.
EDIT
As far as template matching goes, you wouldn't normally use it to solve such a problem because the thing you're looking for is changing appearance and shape. There aren't really any "dynamic parameters to set". The closest thing you could try is have a massive template collection that would try to cover the expected forms that your target may take. But it would hardly be an elegant solution. Plus it wouldn't scale.
Next, to your point about face recognition. This is kind of related, but most facial recognition applications deal with a controlled environment: lighting, distance, pose, angle, etc. Outside of that controlled environment face detection effectiveness drops significantly. If you're detecting objects in a movie, then your environment isn't really controlled.
You may want to first try a simpler problem of accurately detecting where the characters are, without determining who they are (video surveillance, essentially). While it may sound simple, you'll find that it's actually non-trivial for arbitrary scenes. The result of solving that problem may be useful in identifying the characters.
There is Find-Object by Mathieu Labbé. It was very helpful for me to start getting an understanding of the descriptors since you can change them while your video is running to see what happens.
This is probably too late, but might help someone else looking for a solution.
Well, using OpenCV you would of taking a frame of a video file and do any computations on it.
You can do several different methods of detecting a character on that image, but it's not so easy to have it as flexible so you can even get that person if it's lying on the floor for example, if you only entered reference images of that character standing.
Basically you could try extracting all important features from your set of reference pictures and have a (in your case supervised) learning algorithm that gets a good feature-vector of that character for classification.
You then need to write your code that plays the video and which takes a video frame let's say each 500ms (or other as you desire), gets a segmentation of the object you thing would be that character and compare it with the reference values you get from your learning algorithm. If there's a match, your code can yell "Yehaaawww!" or do other things...
But all this depends on how flexible you want this to be. You could also try a template match or cross-correlation which basically shifts the reference image(s) over the frame and checks how equal both parts are. But this unfortunately is very sensitive for rotation, deformations or other noise... so you wouldn't get that person if its i.e. laying down. And I doubt you can get all those calculations done in realtime...
Basically: Yes OpenCV is good to use for your image processing/computer vision tasks. But it offers a lot of methods and ways and you'd need to find a way that works for your images... it's not a trivial task though...
Hope that helps...
Have you tried looking at some of the work of the Oxford visual geometry group?
Their Video Google system describes to a large extent what you want, instance detection.
Their work into Naming People in TV shows is also pretty relevant. A face detection and facial feature pipeline is included that can be run from Matlab. Are you familiar with Matlab?
Have you tried computer vision frameworks like Cassandra? There you can exactly do that just by some mouse clicks.

what are the steps in object detection?

I'm new to image processing and I want to do a project in object detection. So help me by suggesting a step-by-step procedure to this project. Thanx.
Object detection is a very complex problem that includes some real hardcore math and long tuning of parameters to the computation methods involved. Your best bet is to use some freely available library for that - Google will help.
There are lot of algorithms about the theme and no one is the best of all. It's usually a mixture of them what makes the best solution to the solution.
For example, for object movement detection you could look at frame differencing and misture of gaussians.
Also, it's very dependent of your application, the environment (i.e. noise, signal quality), the processing capacity you may have available, the allowable error margin...
Besides, for it to work, most of time it's first necessary to do some kind of image processing to the input data like median filter, sobel filter, contrast enhancement and a large so on.
I think you should start reading all you can: books, google and, very important, a lot of papers about the subjects (there are many free in internet) you are interested in.
And first of all, i think it's fundamental (at least it has been for me) having a good library for testing. The one i have used/use is OpenCV. It's very complete, implement many of the actual more advanced algorithms, is very active, has a big community and it's free.
Open Computer Vision Library (OpenCV)
Have luck ;)
Take a look at AForge.NET. It's nowhere near Project Natal's levels of accuracy or usefulness, but it does give you the tools to learn the algorithms easily. It's an image processing and AI library and there are several tutorials on colored object tracking and motion detection.
Another one to look at is OpenCV from Intel. I believe it's a bit more advanced, but it's written in C.
Take a look at this. It might get you started in this complex field. The algorithm pages that it links to are interesting reading.
http://sun-valley.stanford.edu/projects/helicopters/final.html
This lecture by Jeff Hawkins, will give you an idea about the state of the art in this super-difficult field.
Seems that video disappeared... but this vid should cover similar ground.

Resources