What does 'deferred substitution' mean? - parsing

I'm writing a simple parser/interpreter for a language. The instructions keep mentioning 'deferred substitution', as in
Extend the fun language feature described so that functions
can accept a list of zero or more arguments instead of just one. All
arguments to the function must evaluate with the same deferred
substitutions.
I don't need any help with implementing this, I'm just confused about what 'deferred substitution' means. Any thoughts?

Deferred substitution refers to the practice of substituting the values of variables at the latest step possible. By doing so, you are deferring the substitution of it!
Here's an example that might help you understand what it means:
Suppose that you have the following function:
f(x) = 500 + 300 + 2x + 45x
Let's say that x = 1
If you want to defer the substitution of x, you would probably do:
f(x) = 800 + 2x + 45x
f(x) = 800 + 47x
f(1) = 800 + 47(1)
Notice that we have substituted the values of x at the latest step possible, after simplifying everything that is not a variable in this function.

Related

How do I tell Maxima about valid approximations of subexpressions of a large expression?

I have a fairly large expression that involves a lot of subexpressions of the form (100*A^3 + 200*A^2 + 100*A)*x or (-A^2 - A)*y or (100*A^2 + 100*A)*z
I know, but I don't know how to tell Maxima this, that it in this case is valid to make the approximation A+1 ~ A, thereby effectively removing anything but the highest power of A in each coefficient.
I'm now looking for functions, tools, or methods that I can use to guide Maxima in dropping various terms that aren't important.
I have attempted with subst, but that requires me to specify each and every factor separately, because:
subst([A+1=B], (A+2)*(A+1)*2);
subst([A+1=B], (A+2)*(A*2+2));
(%o1) 2*(A+2)*B
(%o2) (A+2)*(2*A+2)
(that is, I need to add one expression for each slightly different variant)
I tried with ratsimp, but that's too eager to change every occurrence:
ratsubst(B, A+1, A*(A+1)*2);
ratsubst(B, A+1, A*(A*2+2));
(%o3) 2*B^2-2*B
(%o4) 2*B^2-2*B
which isn't actually simpler, as I would have preferred the answer to have been given as 2*B^2.
In another answer, (https://stackoverflow.com/a/22695050/5999883) the functions let and letsimp were suggested for the task of substituting values, but I fail to get them to really do anything:
x:(A+1)*A;
let ( A+1, B );
letsimp(x);
(x)A*(A+1)
(%o6) A+1 --\> B
(%o7) A^2+A
Again, I'd like to approximate this expression to A^2 (B^2, whatever it's called).
I understand that this is, in general, a hard problem (is e.g. A^2 + 10^8*A still okay to approximate as A^2?) but I think that what I'm looking for is a function or method of calculation that would be a little bit smarter than subst and can recognize that the same substitution could be done in the expression A^2+A as in the expression 100*A^2+100*A or -A^2-A instead of making me create a list of three (or twenty) individual substitutions when calling subst. The "nice" part of the full expression that I'm working on is that each of these A factors are of the form k*A^n*(A+1)^m for various small integers n, m, so I never actually end up with the degenerate case mentioned above.
(I was briefly thinking of re-expressing my expression as a polynomial in A, but this will not work as the only valid approximation of the expression (A^3+A^2+A)*x + y is A^3*x + y -- I know nothing about the relative sizes of x and y.

Display polynomials in reverse order in SageMath

So I would like to print polynomials in one variable (s) with one parameter (a), say
a·s^3 − s^2 - a^2·s − a + 1.
Sage always displays it with decreasing degree, and I would like to get something like
1 - a - a^2·s - s^2 + a·s^3
to export it to LaTeX. I can't figure out how to do this... Thanks in advance.
As an alternative to string manipulation, one can use the series expansion.
F = a*s^3 - s^2 - a^2*s - a + 1
F.series(s, F.degree(s)+1)
returns
(-a + 1) + (-a^2)*s + (-1)*s^2 + (a)*s^3
which appears to be what you wanted, save for some redundant parentheses.
This works because (a) a power series is ordered from lowest to highest coefficients; (b) making the order of remainder greater than the degree of the polynomial ensures that the series is just the polynomial itself.
This is not easy, because the sort order is defined in Pynac, a fork of Ginac, which Sage uses for its basic symbolic manipulation. However, depending on what you need, it is possible programmatically:
sage: F = 1 + x + x^2
sage: "+".join(map(str,sorted([f for f in F.operands()],key=lambda exp:exp.degree(x))))
'1+x+x^2'
I don't know whether this sort of thing is powerful enough for your needs, though. You may have to traverse the "expression tree" quite a bit but at least your sort of example seems to work.
sage: F = a + a^2*x + x^2 - a*x^2
sage: "+".join(map(str,sorted([f for f in F.operands()],key=lambda exp:exp.degree(x))))
'a+a^2*x+-a*x^2+x^2'
Doing this in a short statement requires a number of Python tricks like this, which are very well worth learning if you are going to use Sage (or Numpy, or pandas, or ...) a fair amount.

Pattern matching a binary in erlang

I'm trying to pattern match a binary against this
<<_:(A * ?N + A + B)/binary,T:1/binary,_/binary>>
However it seems erlang throws an error saying that variable T is unbound. Just a quick explanation: I want to ignore a certain number of bytes and then read a byte and then ignore the remaining bytes. How can I achieve this?
In bit syntax we can't use runtime expressions as bit size.
We can use only constants, compile time expressions like _:(4*8)/binary and variables: _:Var/binary.
In your case, solution is to bind A * ?N + A + B to variable first.
IgnoredBytes = A * ?N + A + B,
<<_:IgnoredBytes/binary,T:1/binary,_/binary>> = SomeBinary,
T.
It's Better explained in answer from [erlang-questions]

Moving Average across Variables in Stata

I have a panel data set for which I would like to calculate moving averages across years.
Each year is a variable for which there is an observation for each state, and I would like to create a new variable for the average of every three year period.
For example:
P1947=rmean(v1943 v1944 v1945), P1947=rmean(v1944 v1945 v1946)
I figured I should use a foreach loop with the egen command, but I'm not sure about how I should refer to the different variables within the loop.
I'd appreciate any guidance!
This data structure is quite unfit for purpose. Assuming an identifier id you need to reshape, e.g.
reshape long v, i(id) j(year)
tsset id year
Then a moving average is easy. Use tssmooth or just generate, e.g.
gen mave = (L.v + v + F.v)/3
or (better)
gen mave = 0.25 * L.v + 0.5 * v + 0.25 * F.v
More on why your data structure is quite unfit: Not only would calculation of a moving average need a loop (not necessarily involving egen), but you would be creating several new extra variables. Using those in any subsequent analysis would be somewhere between awkward and impossible.
EDIT I'll give a sample loop, while not moving from my stance that it is poor technique. I don't see a reason behind your naming convention whereby P1947 is a mean for 1943-1945; I assume that's just a typo. Let's suppose that we have data for 1913-2012. For means of 3 years, we lose one year at each end.
forval j = 1914/2011 {
local i = `j' - 1
local k = `j' + 1
gen P`j' = (v`i' + v`j' + v`k') / 3
}
That could be written more concisely, at the expense of a flurry of macros within macros. Using unequal weights is easy, as above. The only reason to use egen is that it doesn't give up if there are missings, which the above will do.
FURTHER EDIT
As a matter of completeness, note that it is easy to handle missings without resorting to egen.
The numerator
(v`i' + v`j' + v`k')
generalises to
(cond(missing(v`i'), 0, v`i') + cond(missing(v`j'), 0, v`j') + cond(missing(v`k'), 0, v`k')
and the denominator
3
generalises to
!missing(v`i') + !missing(v`j') + !missing(v`k')
If all values are missing, this reduces to 0/0, or missing. Otherwise, if any value is missing, we add 0 to the numerator and 0 to the denominator, which is the same as ignoring it. Naturally the code is tolerable as above for averages of 3 years, but either for that case or for averaging over more years, we would replace the lines above by a loop, which is what egen does.
There is a user written program that can do that very easily for you. It is called mvsumm and can be found through findit mvsumm
xtset id time
mvsumm observations, stat(mean) win(t) gen(new_variable) end

Implementing post / pre increment / decrement when translating to Lua

I'm writing a LSL to Lua translator, and I'm having all sorts of trouble implementing incrementing and decrementing operators. LSL has such things using the usual C like syntax (x++, x--, ++x, --x), but Lua does not. Just to avoid massive amounts of typing, I refer to these sorts of operators as "crements". In the below code, I'll use "..." to represent other parts of the expression.
... x += 1 ...
Wont work, coz Lua only has simple assignment.
... x = x + 1 ...
Wont work coz that's a statement, and Lua can't use statements in expressions. LSL can use crements in expressions.
function preIncrement(x) x = x + 1; return x; end
... preIncrement(x) ...
While it does provide the correct value in the expression, Lua is pass by value for numbers, so the original variable is not changed. If I could get this to actually change the variable, then all is good. Messing with the environment might not be such a good idea, dunno what scope x is. I think I'll investigate that next. The translator could output scope details.
Assuming the above function exists -
... x = preIncrement(x) ...
Wont work for the "it's a statement" reason.
Other solutions start to get really messy.
x = preIncrement(x)
... x ...
Works fine, except when the original LSL code is something like this -
while (doOneThing(x++))
{
doOtherThing(x);
}
Which becomes a whole can of worms. Using tables in the function -
function preIncrement(x) x[1] = x[1] + 1; return x[1]; end
temp = {x}
... preincrement(temp) ...
x = temp[1]
Is even messier, and has the same problems.
Starting to look like I might have to actually analyse the surrounding code instead of just doing simple translations to sort out what the correct way to implement any given crement will be. Anybody got any simple ideas?
I think to really do this properly you're going to have to do some more detailed analysis, and splitting of some expressions into multiple statements, although many can probably be translated pretty straight-forwardly.
Note that at least in C, you can delay post-increments/decrements to the next "sequence point", and put pre-increments/decrements before the previous sequence point; sequence points are only located in a few places: between statements, at "short-circuit operators" (&& and ||), etc. (more info here)
So it's fine to replace x = *y++ + z * f (); with { x = *y + z * f(); y = y + 1; }—the user isn't allowed to assume that y will be incremented before anything else in the statement, only that the value used in *y will be y before it's incremented. Similarly, x = *--y + z * f(); can be replaced with { y = y - 1; x = *y + z * f (); }
Lua is designed to be pretty much impervious to implementations of this sort of thing. It may be done as kind of a compiler/interpreter issue, since the interpreter can know that variables only change when a statement is executed.
There's no way to implement this kind of thing in Lua. Not in the general case. You could do it for global variables by passing a string to the increment function. But obviously it wouldn't work for locals, or for variables that are in a table that is itself global.
Lua doesn't want you to do it; it's best to find a way to work within the restriction. And that means code analysis.
Your proposed solution only will work when your Lua variables are all global. Unless this is something LSL also does, you will get trouble translating LSL programs that use variables called the same way in different places.
Lua is only able of modifying one lvalue per statement - tables being passed to functions are the only exception to this rule. You could use a local table to store all locals, and that would help you out with the pre-...-crements; they can be evaluated before the expression they are contained in is evauated. But the post-...-crements have to be evaluated later on, which is simply not possible in lua - at least not without some ugly code involving anonymous functions.
So you have one options: you must accept that some LSL statements will get translated to several Lua statements.
Say you have a LSL statement with increments like this:
f(integer x) {
integer y = x + x++;
return (y + ++y)
}
You can translate this to a Lua statement like this:
function f(x) {
local post_incremented_x = x + 1 -- extra statement 1 for post increment
local y = x + post_incremented_x
x = post_incremented_x -- extra statement 2 for post increment
local pre_incremented_y = y + 1
return y + pre_incremented_y
y = pre_incremented_y -- this line will never be executed
}
So you basically will have to add two statements per ..-crement used in your statements. For complex structures, that will mean calculating the order in which the expressions are evaluated.
For what is worth, I like with having post decrements and predecrements as individual statements in languages. But I consider it a flaw of the language when they can also be used as expressions. The syntactic sugar quickly becomes semantic diabetes.
After some research and thinking I've come up with an idea that might work.
For globals -
function preIncrement(x)
_G[x] = _G[x] + 1
return _G[x]
end
... preIncrement("x") ...
For locals and function parameters (which are locals to) I know at the time I'm parsing the crement that it is local, I can store four flags to tell me which of the four crements is being used in the variables AST structure. Then when it comes time to output the variables definition, I can output something like this -
local x;
function preIncrement_x() x = x + 1; return x; end
function postDecrement_x() local y = x; x = x - 1; return y; end
... preIncrement_x() ...
In most of your assessment of configurability to the code. You are trying to hard pass data types from one into another. And call it a 'translator'. And in all of this you miss regex and other pattern match capacities. Which are far more present in LUA than LSL. And since the LSL code is being passed into LUA. Try using them, along with other functions. Which would define the work more as a translator, than a hard pass.
Yes I know this was asked a while ago. Though, for other viewers of this topic. Never forget the environments you are working in. EVER. Use what they give you to the best ability you can.

Resources