I like to know what is the best way of classifying texture images that have extreme randomness but contains slight repeated patterns. I know nothing in this area and any link that points to good resources are welcome.
I want to separating two images that contain 8 bit grayscale textures that have visually no image but i suppose algorithms are able to detect similarities and differences.
basically you need to extract texture features. Some of the texture features you should try using are
1. GLCM features (matlab implementation : http://www.mathworks.com/matlabcentral/fileexchange/22187-glcm-texture-features)
2. LBP (local binary pattern)
3. Gabor features (I have an implementation for this, pls tell me if u want these)
4. Wavelet features
Another excellent source to solution to your problem
http://academiccommons.columbia.edu/download/fedora_content/download/ac:128294/CONTENT/81.pdf
Related
I'm making a program to detect shapes from an r/c plane for a competition. I have no real images of the targets, but I do have computer generated examples of them on the rules.
My question is, can I train my program to detect real world objects based on computer generated shapes or should I find a different method to complete this task?
I would like to know before I foolishly generate 5k samples and find them useless in the end.
EDIT: I also don't know the exact color of the objects. If I feed the program samples of varying color, will it be a problem?
Thanks in advance!!
Edit2: Here's what groups from my school detected in previous years
As you can see, the detected images are not nearly as flawless as what would appear in real life. If you can suggest a better method, that would help.
If you think that the real images will have unique colors with simple geometric shapes then you could probably try to create a normalized Hue-histogram. Use it to train SVM classifier. The benefit of using Hue-histogram is that it will be rotational and scale invariant.
You can take the few precautions in mind:
Don't forget to remove the illumination affects.
Sometimes, White and black pixels create some problem in hue-histogram calculation so try to remove them from calculation by considering only those pixel which have S>0 and V>0 in S & V channels of HSV image.
I would rather suggest you to use the real world images because the performance is largely dependent upon training (my personal experience). And why don't you try to use SIFT/SURF descriptors for training to SVM (support vector machine) as SIFT/SURF are scale as well as rotational invariant.
I'm new in the texture recognition field, and I would like to know which are the possible ways to approach a texture problem in opencv.
I need to identify the texture within a region in the pic, and tell if it is uniform, homogeneous in the whole area, or not.
More in depth, I need to be able to tell if a possible fallen person is a person (with many different kind of textures) or something wrong like a pillow, or a blanket.
Could anyone suggest a solution, please?
Is there some already made opencv code to adapt?
Thanks in advance!
Why don't use haralick features? I other words they are called texture features. The base idea is to compute coocurence matrix from given gray-scaled image on base which the haralick features are computed. You can pick between different features like contrast, correlation, entropy etc. which can describe your texture. I guess for the same texture given feature should have the same (similar) value, so that might be the way for distinguishing textures.
Here some links can be helpful:
Coocurence matrix tutorial
Haralik features summary
Coocurence matrix in scikit image
So far as I know, there is no implementation of haralick features in opencv, but you can use python with scikit-image (of course you can use opencv with python if you don't mind using something different than c++).
I have images of mosquitos similar to these ones and I would like to automatically circle around the head of each mosquito in the images. They are obviously in different orientations and there are random number of them in different images. some error is fine. Any ideas of algorithms to do this?
This problem resembles a face detection problem, so you could try a naïve approach first and refine it if necessary.
First you would need to recreate your training set. For this you would like to extract small images with examples of what is a mosquito head or what is not.
Then you can use those images to train a classification algorithm, be careful to have a balanced training set, since if your data is skewed to one class it would hit the performance of the algorithm. Since images are 2D and algorithms usually just take 1D arrays as input, you will need to arrange your images to that format as well (for instance: http://en.wikipedia.org/wiki/Row-major_order).
I normally use support vector machines, but other algorithms such as logistic regression could make the trick too. If you decide to use support vector machines I strongly recommend you to check libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/), since it's a very mature library with bindings to several programming languages. Also they have a very easy to follow guide targeted to beginners (http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf).
If you have enough data, you should be able to avoid tolerance to orientation. If you don't have enough data, then you could create more training rows with some samples rotated, so you would have a more representative training set.
As for the prediction what you could do is given an image, cut it using a grid where each cell has the same dimension that the ones you used on your training set. Then you pass each of this image to the classifier and mark those squares where the classifier gave you a positive output. If you really need circles then take the center of the given square and the radius would be the half of the square side size (sorry for stating the obvious).
So after you do this you might have problems with sizes (some mosquitos might appear closer to the camera than others) , since we are not trained the algorithm to be tolerant to scale. Moreover, even with all mosquitos in the same scale, we still might miss some of them just because they didn't fit in our grid perfectly. To address this, we will need to repeat this procedure (grid cut and predict) rescaling the given image to different sizes. How many sizes? well here you would have to determine that through experimentation.
This approach is sensitive to the size of the "window" that you are using, that is also something I would recommend you to experiment with.
There are some research may be useful:
A Multistep Approach for Shape Similarity Search in Image Databases
Representation and Detection of Shapes in Images
From the pictures you provided this seems to be an extremely hard image recognition problem, and I doubt you will get anywhere near acceptable recognition rates.
I would recommend a simpler approach:
First, if you have any control over the images, separate the mosquitoes before taking the picture, and use a white unmarked underground, perhaps even something illuminated from below. This will make separating the mosquitoes much easier.
Then threshold the image. For example here i did a quick try taking the red channel, then substracting the blue channel*5, then applying a threshold of 80:
Use morphological dilation and erosion to get rid of the small leg structures.
Identify blobs of the right size to be moquitoes by Connected Component Labeling. If a blob is large enough to be two mosquitoes, cut it out, and apply some more dilation/erosion to it.
Once you have a single blob like this
you can find the direction of the body using Principal Component Analysis. The head should be the part of the body where the cross-section is the thickest.
What are the ways in which to quantify the texture of a portion of an image? I'm trying to detect areas that are similar in texture in an image, sort of a measure of "how closely similar are they?"
So the question is what information about the image (edge, pixel value, gradient etc.) can be taken as containing its texture information.
Please note that this is not based on template matching.
Wikipedia didn't give much details on actually implementing any of the texture analyses.
Do you want to find two distinct areas in the image that looks the same (same texture) or match a texture in one image to another?
The second is harder due to different radiometry.
Here is a basic scheme of how to measure similarity of areas.
You write a function which as input gets an area in the image and calculates scalar value. Like average brightness. This scalar is called a feature
You write more such functions to obtain about 8 - 30 features. which form together a vector which encodes information about the area in the image
Calculate such vector to both areas that you want to compare
Define similarity function which takes two vectors and output how much they are alike.
You need to focus on steps 2 and 4.
Step 2.: Use the following features: std() of brightness, some kind of corner detector, entropy filter, histogram of edges orientation, histogram of FFT frequencies (x and y directions). Use color information if available.
Step 4. You can use cosine simmilarity, min-max or weighted cosine.
After you implement about 4-6 such features and a similarity function start to run tests. Look at the results and try to understand why or where it doesnt work. Then add a specific feature to cover that topic.
For example if you see that texture with big blobs is regarded as simmilar to texture with tiny blobs then add morphological filter calculated densitiy of objects with size > 20sq pixels.
Iterate the process of identifying problem-design specific feature about 5 times and you will start to get very good results.
I'd suggest to use wavelet analysis. Wavelets are localized in both time and frequency and give a better signal representation using multiresolution analysis than FT does.
Thre is a paper explaining a wavelete approach for texture description. There is also a comparison method.
You might need to slightly modify an algorithm to process images of arbitrary shape.
An interesting approach for this, is to use the Local Binary Patterns.
Here is an basic example and some explanations : http://hanzratech.in/2015/05/30/local-binary-patterns.html
See that method as one of the many different ways to get features from your pictures. It corresponds to the 2nd step of DanielHsH's method.
I want to develop an application in which user input an image (of a person), a system should be able to identify face from an image of a person. System also works if there are more than one persons in an image.
I need a logic, I dont have any idea how can work on image pixel data in such a manner that it identifies person faces.
Eigenface might be a good algorithm to start with if you're looking to build a system for educational purposes, since it's relatively simple and serves as the starting point for a lot of other algorithms in the field. Basically what you do is take a bunch of face images (training data), switch them to grayscale if they're RGB, resize them so that every image has the same dimensions, make the images into vectors by stacking the columns of the images (which are now 2D matrices) on top of each other, compute the mean of every pixel value in all the images, and subtract that value from every entry in the matrix so that the component vectors won't be affine. Once that's done, you compute the covariance matrix of the result, solve for its eigenvalues and eigenvectors, and find the principal components. These components will serve as the basis for a vector space, and together describe the most significant ways in which face images differ from one another.
Once you've done that, you can compute a similarity score for a new face image by converting it into a face vector, projecting into the new vector space, and computing the linear distance between it and other projected face vectors.
If you decide to go this route, be careful to choose face images that were taken under an appropriate range of lighting conditions and pose angles. Those two factors play a huge role in how well your system will perform when presented with new faces. If the training gallery doesn't account for the properties of a probe image, you're going to get nonsense results. (I once trained an eigenface system on random pictures pulled down from the internet, and it gave me Bill Clinton as the strongest match for a picture of Elizabeth II, even though there was another picture of the Queen in the gallery. They both had white hair, were facing in the same direction, and were photographed under similar lighting conditions, and that was good enough for the computer.)
If you want to pull faces from multiple people in the same image, you're going to need a full system to detect faces, pull them into separate files, and preprocess them so that they're comparable with other faces drawn from other pictures. Those are all huge subjects in their own right. I've seen some good work done by people using skin color and texture-based methods to cut out image components that aren't faces, but these are also highly subject to variations in training data. Color casting is particularly hard to control, which is why grayscale conversion and/or wavelet representations of images are popular.
Machine learning is the keystone of many important processes in an FR system, so I can't stress the importance of good training data enough. There are a bunch of learning algorithms out there, but the most important one in my view is the naive Bayes classifier; the other methods converge on Bayes as the size of the training dataset increases, so you only need to get fancy if you plan to work with smaller datasets. Just remember that the quality of your training data will make or break the system as a whole, and as long as it's solid, you can pick whatever trees you like from the forest of algorithms that have been written to support the enterprise.
EDIT: A good sanity check for your training data is to compute average faces for your probe and gallery images. (This is exactly what it sounds like; after controlling for image size, take the sum of the RGB channels for every image and divide each pixel by the number of images.) The better your preprocessing, the more human the average faces will look. If the two average faces look like different people -- different gender, ethnicity, hair color, whatever -- that's a warning sign that your training data may not be appropriate for what you have in mind.
Have a look at the Face Recognition Hompage - there are algorithms, papers, and even some source code.
There are many many different alghorithms out there. Basically what you are looking for is "computer vision". We had made a project in university based around facial recognition and detection. What you need to do is google extensively and try to understand all this stuff. There is a bit of mathematics involved so be prepared. First go to wikipedia. Then you will want to search for pdf publications of specific algorithms.
You can go a hard way - write an implementaion of all alghorithms by yourself. Or easy way - use some computer vision library like OpenCV or OpenVIDIA.
And actually it is not that hard to make something that will work. So be brave. A lot harder is to make a software that will work under different and constantly varying conditions. And that is where google won't help you. But I suppose you don't want to go that deep.