How do you inject your dependencies when they need differents parameters? - dependency-injection

For instance I have this bit of code
public class ProductService{
private IProductDataSource _dataSource = DependencyManager.Get<IProductDataSource>();
public Product Get(int id){
return _dataSource.Select(id);
}
}
I have 2 different data source:
XML file which contains the informations only in 1 language,
a SQL data base which contains the informations in many languages.
So I created 2 implementation for IProductDataSource, for for each kind of datasource.
But how do I send the required language to the SQL data source ?
I add the parameter "language" to the method "IProductDataSource.Select" even if I won't use it in the case of the XML implementation.
Inside the SQL implementation I get the language from a global state ?
I add the language to the constructor of my SQL implementation, but then I won't use my DependencyManager and handle my self the dependency injection.
Maybe my first solution is not good.

The third option is the way to go. Inject the language configuration to your SQL implementation. Also get rid of your DependencyManager ServiceLocator and use constructor injection instead.

If your application needs to work with multiple languages in a single instance I think point one is a sensible approach. If the underlying data does not provide translations for a request language then return null. There is another solution in this scenario. I'm assuming that what you have is a list of products and language translations for each product. Can you refactor your model so that you do not need to specify or asertain the langauge until you reference language specific text? The point being a product is a product regardless of the language you choose to describe it. i.e. one product instance per product, only the product id on the Datasource.Select(..) method and some other abstraction mechanism to deal with accessing the correct text translation.
If however each instance of your application is only concerned with one language set I second Mr Gloor.

First of all I need to point out that you are NOT injecting any dependencies with your example - you are depending on a service locator (DependencyManager) to get them for you. Dependency injection, simply put, is when your classes are unaware of who provides the dependencies, e.g. using a constructor, a setter, a method. As it was already mentioned in the other answers, Service locator is an anti-pattern and should be avoided. The reasons are described in this great article.
Another thing is that the settings you are mentioning, such as language or currency, seem to be localization related and would probably be better dealt with using the built-in mechanisms of your language of choice (e.g. resource files, etc).
Now, having said that, depending on how the rest of your code is structured you have several options to solve this while still using Service locator:
You could have SqlDataSource depend on some ILanguageProvider which pulls the current language from somewhere. However, with more settings like these (or if it is difficult to get current language in an isolated way) this can get messy very fast.
You could depend on IProductDataSourceFactory instead (or, if you are using C#, Func<IProductDataSource>) which would return the concrete implementation with the correct settings. Again, you need to be able to get the current language in an isolated way in order to use this.
You could go with option 1 in your question. This would be a leaky abstraction but would be the simplest to implement.
However, if you decide to get rid of service locator and start using some DI container, the best solution would be using option 3 (as it was already stated) and configuring container accordingly to provide the correct value. Some good ideas of how to do this in an elegant way can be found in the answer to this question

Related

Dependency injection: Is it ok to instatiate a concrete object from a concrete factory

I am fairly new to Dependency Injection, and I wrote a great little app that worked exactly like Mark Seemann told me it would and the world was great. I even added some extra complexity to it just to see if I could handle that using DI. And I could, happy days.
Then I took it to a real world application and spent a long time scratching my head. Mark tells me that I am not allowed to use the 'new' keyword to instantiate objects, and I should instead let the IoC do this for me.
However, say that I have a repository and I want it to be able to return me a list of things, thusly:
public interface IThingRepository
{
public IEnumerable<IThing> GetThings();
}
Surely at least one implementation of this interface will have to instantiate some Thing's? And it doesn't seem so bad being allowing ThingRepository to new up some Things as they are related anyway.
I could instead pass round a POCO instead, but at some point I'm going to have to convert the POCO in to a business object, which would require me to new something up.
This situation seems to occur every time I want a number of things which is not knowable in the Composition Root (ie we only find out this information later - for example when querying the database).
Does anyone know what the best practice is in these kinds of situations?
In addition to Steven's answer, I think it is ok for a specific factory to new up it's specific matching-implementation that it was created for.
Update
Also, check this answer, specifically the comments, which say something about new-ing up instances.
Example:
public interface IContext {
T GetById<T>(int id);
}
public interface IContextFactory {
IContext Create();
}
public class EntityContext : DbContext, IContext {
public T GetById<T>(int id) {
var entity = ...; // Retrieve from db
return entity;
}
}
public class EntityContextFactory : IContextFactory {
public IContext Create() {
// I think this is ok, since the factory was specifically created
// to return the matching implementation of IContext.
return new EntityContext();
}
}
Mark tells me that I am not allowed to use the 'new' keyword to instantiate objects
That's not what Mark Seemann tells you, or what he means. You must make the clear separation between services (controlled by your composition root) at one side and primitives, entities, DTOs, view models and messages on the other side. Services are injectables and all other types are newables. You should only prevent using new on service types. It would be silly to prevent newing up strings for instance.
Since in your example the service is a repository, it seems reasonable to assume that the repository returns domain objects. Domain objects are newables and there's no reason not to new them manually.
Thanks for the answers everybody, they led me to the following conclusions.
Mark makes a distinction between stable and unstable dependencies in the book I am reading ( "Dependency injection in .NET"). Stable dependencies (eg Strings) can be created at will. Unstable dependencies should be moved behind a seam / interface.
A dependency is anything that is in a different assembly from the one that we are writing.
An unstable dependency is any of the following
It requires a run time environment to be set up such as a database, web server, maybe even the file system (otherwise it won't be extensible or testable, and it means we couldn't do late binding if we wanted to)
It doesn't exist yet (otherwise we can't do parallel development)
It requires something that isn't installed on all machines (otherwise it can cause test difficulties)
It contains non deterministic behaviour (otherwise impossible to test well)
So this is all well and good.
However, I often hide things behind seams within the same assembly. I find this extremely helpful for testing. For example if I am doing a complex calculation it is impossible to test the entire calculation well in one go. If I split the calculation up into lots of smaller classes and hide these behind seams, then I can easily inject any arbirtary intermediate results into a calculating class.
So, having had a good old think about it, these are my conclusions:
It is always OK to create a stable dependency
You should never create unstable dependencies directly
It can be useful to use seams within an assembly, particularly to break up big classes and make them more easily testable.
And in answer to my original question, it is ok to instatiate a concrete object from a concrete factory.

StructureMap specific constructor - how should parameters be initialized?

Given the following piece of a StructureMap registry
For<ILogger>().Use(LogFactory.CreateLogger());
For<Scheduler>().Use(() => new Scheduler(ObjectFactory.GetInstance<ILogger>()));
...is this a good way of providing an ILogger to the Scheduler? It works - but I'm curious to know if it's a poor way of providing a type that the container is configured to provide, or whether it's my only option given the scenario... the scenario being that the Scheduler type itself has other constructors which I cannot change, nor do I care for - but they are needed, so I need to specify this particular constructor rather than using a straight For<x>().Use<y>();
It would be best if the registered service has exactly one public constructor. This makes it unambiguous what dependencies a service makes and makes it very clear which constructor will be selected by the container, and it allows you to register types using the more flexible Use<T>(), and makes the composition root less likely to be changed when the constructor changed.
However, as you said, in your case you can't change the constructors of that type, so you will have to fall back. There are multiple ways to select the proper constructor with StructureMap, but registering a delegate is the best way, since this gives you compile time support.

Can Autofac do automatic self-binding?

I know some DI frameworks support this (e.g. Ninject), but I specifically want to know if it's possible with Autofac.
I want to be able to ask an Autofac container for a concrete class, and get back an instance with all appropriate constructor dependencies injected, without ever registering that concrete class. I.e., if I never bind it explicitly, then automatically bind the concrete class to itself, as if I had called builder.Register<MyClass>();
A good example of when this would be useful is ViewModels. In MVVM, the layering is such that only the View depends on the ViewModel, and that via loose typing, and you don't unit-test the View anyway. So there's no need to mock the ViewModel for tests -- and therefore there's no reason to have an interface for each ViewModel. So in this case, the usual DI pattern of "register this interface to resolve to this class" is unnecessary complexity. Explicit self-binding, like builder.Register<MyClass>();, also feels like an unnecessary step when dealing with something as straightforward as a concrete class.
I'm aware of the reflection-based registration example in the Autofac docs, but that's not to my taste either. I don't want the complexity (and slowness) of registering every possible class ahead of time; I want the framework to give me what I need when I need it. Convention over configuration, and all that.
Is there any way to configure Autofac so it can say "Oh, this is a concrete type, and nobody registered it yet, so I'll just act like it had been registered with default settings"?
builder.RegisterTypesMatching(type => type.IsClass)
If you look at the source you will see that RegisterTypesMatching (and RegisterTypesFromAssembly) is NOT DOING ANY REFLECTION. All Autofac is doing in this case is registering a rule that accepts a type or not. In my example above I accept any type that is a class.
In the case of RegisterTypesFromAssembly, Autofac registers a rule that says "if the type you're trying to resolve have Assembly == the specified assembly, then I will give you an instance".
So:
no type reflection is done at register time
any type that matches the criteria will be resolved
Compared to register the concrete types directly, this will have a perf hit at resolve time since Autofac will have to figure out e.g. constructor requirements. That said, if you go with default instance scope, which is singleton, you take the hit only the first time you resolve that type. Next time it will use the already created singleton instance.
Update: in Autofac 2 there is a better way of making the container able to resolve anything. This involves the AnyConcreteTypeNotAlreadyRegistered registration source.
what about:
builder.RegisterTypesFromAssembly(Assembly.GetExecutingAssembly());
no reflection is done, as Peter Lillevold points out.

Dependency injection through constructors or property setters?

I'm refactoring a class and adding a new dependency to it. The class is currently taking its existing dependencies in the constructor. So for consistency, I add the parameter to the constructor.
Of course, there are a few subclasses plus even more for unit tests, so now I am playing the game of going around altering all the constructors to match, and it's taking ages.
It makes me think that using properties with setters is a better way of getting dependencies. I don't think injected dependencies should be part of the interface to constructing an instance of a class. You add a dependency and now all your users (subclasses and anyone instantiating you directly) suddenly know about it. That feels like a break of encapsulation.
This doesn't seem to be the pattern with the existing code here, so I am looking to find out what the general consensus is, pros and cons of constructors versus properties. Is using property setters better?
Well, it depends :-).
If the class cannot do its job without the dependency, then add it to the constructor. The class needs the new dependency, so you want your change to break things. Also, creating a class that is not fully initialized ("two-step construction") is an anti-pattern (IMHO).
If the class can work without the dependency, a setter is fine.
The users of a class are supposed to know about the dependencies of a given class. If I had a class that, for example, connected to a database, and didn't provide a means to inject a persistence layer dependency, a user would never know that a connection to the database would have to be available. However, if I alter the constructor I let the users know that there is a dependency on the persistence layer.
Also, to prevent yourself from having to alter every use of the old constructor, simply apply constructor chaining as a temporary bridge between the old and new constructor.
public class ClassExample
{
public ClassExample(IDependencyOne dependencyOne, IDependencyTwo dependencyTwo)
: this (dependnecyOne, dependencyTwo, new DependnecyThreeConcreteImpl())
{ }
public ClassExample(IDependencyOne dependencyOne, IDependencyTwo dependencyTwo, IDependencyThree dependencyThree)
{
// Set the properties here.
}
}
One of the points of dependency injection is to reveal what dependencies the class has. If the class has too many dependencies, then it may be time for some refactoring to take place: Does every method of the class use all the dependencies? If not, then that's a good starting point to see where the class could be split up.
Of course, putting on the constructor means that you can validate all at once. If you assign things into read-only fields then you have some guarantees about your object's dependencies right from construction time.
It is a real pain adding new dependencies, but at least this way the compiler keeps complaining until it's correct. Which is a good thing, I think.
If you have large number of optional dependencies (which is already a smell) then probably setter injection is the way to go. Constructor injection better reveals your dependencies though.
The general preferred approach is to use constructor injection as much as possible.
Constructor injection exactly states what are the required dependencies for the object to function properly - nothing is more annoying than newing up an object and having it crashing when calling a method on it because some dependency is not set. The object returned by a constructor should be in a working state.
Try to have only one constructor, it keeps the design simple and avoids ambiguity (if not for humans, for the DI container).
You can use property injection when you have what Mark Seemann calls a local default in his book "Dependency Injection in .NET": the dependency is optional because you can provide a fine working implementation but want to allow the caller to specify a different one if needed.
(Former answer below)
I think that constructor injection are better if the injection is mandatory. If this adds too many constructors, consider using factories instead of constructors.
The setter injection is nice if the injection is optional, or if you want to change it halfway trough. I generally don't like setters, but it's a matter of taste.
It's largely a matter of personal taste.
Personally I tend to prefer the setter injection, because I believe it gives you more flexibility in the way that you can substitute implementations at runtime.
Furthermore, constructors with a lot of arguments are not clean in my opinion, and the arguments provided in a constructor should be limited to non-optional arguments.
As long as the classes interface (API) is clear in what it needs to perform its task,
you're good.
I prefer constructor injection because it helps "enforce" a class's dependency requirements. If it's in the c'tor, a consumer has to set the objects to get the app to compile. If you use setter injection they may not know they have a problem until run time - and depending on the object, it might be late in run time.
I still use setter injection from time to time when the injected object maybe needs a bunch of work itself, like initialization.
I personally prefer the Extract and Override "pattern" over injecting dependencies in the constructor, largely for the reason outlined in your question. You can set the properties as virtual and then override the implementation in a derived testable class.
I perfer constructor injection, because this seems most logical. Its like saying my class requires these dependencies to do its job. If its an optional dependency then properties seem reasonable.
I also use property injection for setting things that the container does not have a references to such as an ASP.NET View on a presenter created using the container.
I dont think it breaks encapsulation. The inner workings should remain internal and the dependencies deal with a different concern.
One option that might be worth considering is composing complex multiple-dependencies out of simple single dependencies. That is, define extra classes for compound dependencies. This makes things a little easier WRT constructor injection - fewer parameters per call - while still maintaining the must-supply-all-dependencies-to-instantiate thing.
Of course it makes most sense if there's some kind of logical grouping of dependencies, so the compound is more than an arbitrary aggregate, and it makes most sense if there are multiple dependents for a single compound dependency - but the parameter block "pattern" has been around for a long time, and most of those that I've seen have been pretty arbitrary.
Personally, though, I'm more a fan of using methods/property-setters to specify dependencies, options etc. The call names help describe what is going on. It's a good idea to provide example this-is-how-to-set-it-up snippets, though, and make sure the dependent class does enough error checks. You might want to use a finite state model for the setup.
I recently ran into a situation where I had multiple dependencies in a class, but only one of the dependencies was necessarily going to change in each implementation. Since the data access and error logging dependencies would likely only be changed for testing purposes, I added optional parameters for those dependencies and provided default implementations of those dependencies in my constructor code. In this way, the class maintains its default behavior unless overridden by the consumer of the class.
Using optional parameters can only be accomplished in frameworks that support them, such as .NET 4 (for both C# and VB.NET, though VB.NET has always had them). Of course, you can accomplish similar functionality by simply using a property that can be reassigned by the consumer of your class, but you don't get the advantage of immutability provided by having a private interface object assigned to a parameter of the constructor.
All of this being said, if you are introducing a new dependency that must be provided by every consumer, you're going to have to refactor your constructor and all code that consumers your class. My suggestions above really only apply if you have the luxury of being able to provide a default implementation for all of your current code but still provide the ability to override the default implementation if necessary.
Constructor injection does explicitly reveal the dependencies, making code more readable and less prone to unhandled run-time errors if arguments are checked in the constructor, but it really does come down to personal opinion, and the more you use DI the more you'll tend to sway back and forth one way or the other depending on the project. I personally have issues with code smells like constructors with a long list of arguments, and I feel that the consumer of an object should know the dependencies in order to use the object anyway, so this makes a case for using property injection. I don't like the implicit nature of property injection, but I find it more elegant, resulting in cleaner-looking code. But on the other hand, constructor injection does offer a higher degree of encapsulation, and in my experience I try to avoid default constructors, as they can have an ill effect on the integrity of the encapsulated data if one is not careful.
Choose injection by constructor or by property wisely based on your specific scenario. And don't feel that you have to use DI just because it seems necessary and it will prevent bad design and code smells. Sometimes it's not worth the effort to use a pattern if the effort and complexity outweighs the benefit. Keep it simple.
This is an old post, but if it is needed in future maybe this is of any use:
https://github.com/omegamit6zeichen/prinject
I had a similar idea and came up with this framework. It is probably far from complete, but it is an idea of a framework focusing on property injection
It depends on how you want to implement.
I prefer constructor injection wherever I feel the values that go in to the implementation doesnt change often. Eg: If the compnay stragtegy is go with oracle server, I will configure my datsource values for a bean achiveing connections via constructor injection.
Else, if my app is a product and chances it can connect to any db of the customer , I would implement such db configuration and multi brand implementation through setter injection. I have just taken an example but there are better ways of implementing the scenarios I mentioned above.
When to use Constructor injection?
When we want to make sure that the Object is created with all of its dependencies and to ensure that required dependencies are not null.
When to use Setter injection?
When we are working with optional dependencies that can be assigned reasonable default values within the class. Otherwise, not-null checks must be performed everywhere the code uses the dependency.
Additionally, setter methods make objects of that class open to reconfiguration or re-injection at a later time.
Sources:
Spring documentation ,
Java Revisited

Any need for dependency injection in Dynamic Languages?

In order to write testable C# code, I use DI heavily.
However lately I've been messing around with IronPython and found that as you can mock any methods/classes/functions etc... you like, the need for DI is gone.
Is this the case for dynamic langagues such as Python?
Instead of:
class Person(Address) {
...
You can have:
class Person() {
...
// Address initialised in here.
For dynamic languages and therefore following manaual DI for dynamic langagues is simply not needed.
Any advice on this?
Dependency Injection is also about how you wire things together --- which has nothing to do about the mockability of depended-on objects. There's a difference between having a Foo-instance that needs a Bar-connection of some kind instantiate it directly and having it completely ignore how it gets that connection as long as it has it.
If you use dependency injection you also gain better testability. But the converse isn't true. Easier testability by being able to overwrite anything doesn't bring the other advantages of dependency injection. There are many component/DI-frameworks for Python available exactly for these reasons.
I strongly disagree with your statement that Dependency Injection is not needed in dynamically typed languages. The reasons for why DI is useful and necessary are completely independent of the typing discipline of the language.
The main difference is that DI in dynamically typed languages is easy and painless: you don't need a heavyweight framework and a gazillion lines of XML configuration.
In Ruby, for example, there are only two DI frameworks. Both were written by a Java programmer. Neither of the two frameworks is used by a single project. Not even by the author of those frameworks.
However, DI is used all over the place in Ruby.
Jamis Buck, who is the author of both of those frameworks gave a talk called Recovering from Enterprise at RubyConf 2008 about how and why he wrote those frameworks and why that was a bad idea, which is well worth watching. There’s also an accompanying blog post if you’d like to read. (Just substitute “Python” everytime he says “Ruby” and everything will be just as valid.)
I'll try again. My last answer missed the question by a mile and zoomed way off topic.
Using pseudo-code, dependency Injection says out with:
class Person
def Chat() {
someOperation("X","Y","Z")
end
end
...
Person.new().Chat()
and in with:
class Person
initialize(a,b,c)
#a=a
#b=b
#c=c
end
def Chat()
someOperation(#a,#b,#c)
end
end
...
Person.new("X","Y","Z").Chat()
,., and generally in with putting the object and the call into different files for SCM purposes.
Whether "X", "Y" or "Z" are mockable (...if they were instead objects...(!)...(!)...) have nothing at all to do with whether DI is good. Really. :-)
DI is just easier in Python or Ruby, like a lot of other tasks, because there's more of a scripting approach, like Jörg says; and also of course less of a culture and a tendency saying that constants and adapters are to get populated into models and global constants.
In practical terms for me DI is the first step towards separating out those application parameters, API constants and factories into separate files to help make your revision tracking report look less spaghetti-like ("Were those extra checkins on the AppController to change the configuration..? Or to update the code...?") and more informing, and more easy to read.
My recommendation: Keep using DI... :-)
I think you're presenting a question that seems to be about best practice but is actually about run-time performance.
Get rid of dependency injection? How can a software release manager sleep at night?
The tests for function to perform must surely slow the program down one or two tads.
// my generic function entry point - IronPython
if func="a":
...
if func="b":
...
if func="c":
...
You can use standard Python with classes... or you can assign function pointers to function pointer members. Just what kind of a beast is it...?? I know, I know. Python I think is difficult to define but I like it. And I like and think highly of dependency injection, not that I've had long where I'd think to assign such a lengthy name to the practice.

Resources