Performance implications of a table with many fields - ruby-on-rails

I have a table that is currently at 40 fields. A significant expansion of its capability now has it looking like something more like 100 fields.
What are the database and Rails performance implications of having a table with more fields? My understanding of relations is that they don't load the data until absolutely necessary, but would having so much more information slow down, say, a filtered index of these records (showing only the main 8-10 fields)?
The fields I'm specifically talking about adding are not relevant to any of my reports or most of my queries - they simply store data that is used on the back end.
Normalization is not a problem here (there are no fields like field1, field2, ..., for example). I know it's hard to answer these questions when posed in a qualitative manner, but is it likely better to build these 60 fields in this table, or should I create a separate 1-1 table for them?

Having a single table is not a big deal and make things easier when it comes to queries. So if it's relevant, no need to split.
Still, you should only query what you need in your views so use the ActiveRecord's select: doc here.

Yes, having a lot of fields will slow down access to the table, however, in general not significantly enough that it matters for average data sizes. Most SQL databases arrange tables row by row, so on the disk, first all 40 fields of row 1, then all 40 fields of row 2, and so on, are stored. This means, that if you are only interested in retrieving the first 2 fields, you will still read all other 38 fields and then jump to the next row that matches. This is not a big issue if you have only a few matching rows, but might be, if you would have many matches that are also consecutive.
That said, I would still heavily advice against a table with 40 fields, except when there is a very good reason to do so (which you might have, but you give to little details to answer this). In general, having that many fields indicates the use of some alternative design. Definitly, if what I wrote above starts becoming an issue, you should order the fields according to the access patterns (so if normally fields 1-10 and 20,24,25,30 are accessed together, put those groups into separate tables).

Related

DWH SCD type 2 implementation in SQL Server scd2 and scd1

We are implementing a new dwh solution. I have many dimensions that require slowly changing type 2 attributes. I was considering implementing a combination of Type 2 and Type 1 attributes in my dimension. That is for some dimension attributes, we track history by inserting new rows in the dim table (Type2), for other attributes we will just update the existing row for any changes (Type1)
Questions:
Is this a good practice? is it OK to have a combination of SCD 1 and 2 for the same dim?
Is there any limit on the number of SCD 2 attributes in a dimension? My dimension is pretty wide, like 300 cols, out of which one of the users is requesting for about 150 cols to be tracked by scd type 2. Is it OK to have so many scd2 attributes in a dim? Is there going to be any impact on performance of downstream reporting BI solutions like cubes and dashboards because of this?
In the OLTP system, we maintain an "audit" table to log any updates. Though this is not in a very easily queryable format, we get answers to most of our questions related to changes from this. We don't need much reporting on data changes. Of course there are some important columns like Status for which we definitely need SCD2 but rest of the columns, I am not sure having history for lot of other columns in the DWH adds any value. My question is when we have this audit table in OLTP, how do I decide what attributes need SCD 2 in the DWH?
Good practice? Yes. Standard feature of dimensional modelling that is overlooked too often. I've seen dimensions with combinations of SCD0, SCD1 and SCD2, and there's nothing to prevent other SCD-types being used as well.
No limit on columns, but that does seem a little excessive. You probably want to use a "hash" method to detect the SCD2 changes, where you calculate a hash over the SCD2 columns, and use this value to detect if any of the columns have changed.
Sorry, but I don't understand the question about audit logs. Are these logs your data source?

Merging without rewriting one table

I'm wondering about something that doesn't seem efficient to me.
I have 2 tables, one very large table DATA (millions of rows and hundreds of cols), with an id as primary key.
I then have another table, NEW_COL, with variable rows (1 to millions) but alwas 2 cols : id, and new_col_name.
I want to update the first table, adding the new_data to it.
Of course, i know how to do it with a proc sql/left join, or a data step/merge.
Yet, it seems inefficient, as far as I see with time executing, (which may be wrong), these 2 ways of doing rewrite the huge table completly, even when NEW_DATA is only 1 row (almost 1 min).
I tried doing 2 sql, with alter table add column then update, but it's waaaaaaaay too slow as update with joining doesn't seem efficient at all.
So, is there an efficient way to "add a column" to an existing table WITHOUT rewriting this huge table ?
Thanks!
SAS datasets are row stores and not columnar stores like tables in other databases. As such, adding rows is far easier and efficient than adding columns. A key joined view could be argued as the most 'efficient' way to add a column to a data rectangle.
If you are adding columns so often that the 1 min resource incursion is a problem you may need to upgrade hardware with faster drives, less contentious operating environment, or more memory and SASFILE if the new columns are often yet temporary in nature.
#Richard answer is perfect. If you are adding columns on regular basis then there is problem with your design. You either need to give more details on what you are doing and someone can suggest you.
I would try hash join. you can find code for simple hash join. This is efficient way of joining because in your case you have one large table and one small table if it fit into memory, it much better than a left join. I have done various joins using and query run times was considerably less( to order of 10)
By Altering table approach you are rewriting the table and also it causes lock on your table and nobody can use the table.
You should perform this joins when workload is less, which means during not during office and you may need to schedule the jobs in night, when more SAS resources are available
Thanks for your answers guys.
To add information, i don't have any constraint about table locking, balance load or anything as it's a "projet tool" script I use.
The goal is, in data prep step 'starting point data generator', to recompute an already existing data, or add a new one (less often but still quite regularly). Thus, i just don't want to "lose" time to wait for the whole table to rewrite while i only need to update one data for specific rows.
When i monitor the servor, the computation of the data and the joining step are very fast. But when I want tu update only 1 row, i see the whole table rewriting. Seems a waste of ressource to me.
But it seems it's a mandatory step, so can't do much about it.
Too bad.

Dimension with two surrogate keys or two seperate dimensions?

im looking for some guidance for dimensional modeling.
I'm looking at some search data that is stored in a database in a star schema. There is one dimension for queries and one dimension for landing pages. Both dimensions have a surrogate key that are stored in the fact table as foreign keys.
The fact table has about 100 million rows and the dimensions each have about 100k rows.
As the joins of these tables are taking very long lately i'm wondering if it would be a good idea to combine the two dimensions into one so it only joins to one table. The two dimensions are M:N so the new dimension would be very huge.
Thanks!!
There isn't a "right" answer for your question without knowing more about your data (like do you have more dimensions in your fact table? how many combinations of Queries and Landing pages do you have?), but few comments:
You current design (for what I can understand from here) is not bad, you have a lot of data, you have to deal with it, but combine two dimensions with 100K elements to avoid a join doesn't seems right to me
Try to optimize your queries, build indexes if you don't have them, parallelize your queries (if your db engine allows you to do so), try to avoid like in your where if possible, last resource think about more hardware or a different database engine.
If you usually query using only one of these dimensions maybe you can think about aggregated tables to reduce the number of rows, you will use more space but your query will have a single join and a smaller fact table
Can query be child of landing page? (i.e. stackoverflow.com is parent of queries like "Guru Meditation error message" and "stackcareers.com" is parent of "pool boy for datalake jobs") Of course you will end with the same query for multiple landing pages, you will need to assign different foreign keys in that case. But this different model can lead to a different solution, you will have only 1:M relationships and can build an aggregated table by landing page dimension, but this will require to change your queries to extract data. And again I don't know your data, maybe it will make more sense Queries parent of Landing Pages...
Again this are just my "thoughts" no solutions.

Fact table design guidance for 100s of facts

I'm trying to create a datamart for the healthcare application. The facts in the datamart are basically going to be measurements and findings related to heart, and we have 100s of them. Starting from 1000 and can go to as big as 20000 per exam type.
I'm wondering what my design choices for the fact tables are:
Grain: 1 row per patient per exam type.
Some of the choices that I can think of -
1) A big wide fact table with 1000 or more columns.
2) EAV based design - A separate Measure dimension table. This foreign key will go into the fact table and the measure value will be in fact table. So the grain of the fact table will be changed to 1 row per patient per exam type per measurement.
3) Create smaller multiple fact tables per exam type per some other criteria like subgroup. But the end user is going to query across subgroups for that exam type and fact-fact join is not recommended.
4) any other ideas?
Any inputs would be appreciated.
1. A big wide fact table with 1000 or more columns.
One very wide fact table gives end-user maximum flexibility if queries are executed directly in the data warehouse. However some considerations should be taken into account, as you might hit some limits depending on a platform.
SQL Server 2014 limits are as per below:
Bytes per row 8,060. A row-overflow storage might be a solution, however it supports only few column types typically not related to fact nature, i.e. varchar, nvarchar, varbinary, sql_variant. Also not supported in In-Memory OLTP. https://technet.microsoft.com/en-us/library/ms186981(v=sql.105).aspx
Columns per non-wide table 1024. Wide-tables and sparse columns are solution as columns per wide table limit is 30,000. However the same Bytes per row limit applies. https://technet.microsoft.com/en-us/library/cc280604(v=sql.120).aspx
Columns per SELECT/INSERT/UPDATE statement 4,096
Non-clustered indexes per table 999
https://technet.microsoft.com/en-us/library/ms143432(v=sql.120).aspx
2. EAV based design - A separate Measure dimension table. This foreign key will go into the fact table and the measure value will be in fact table. So the grain of the fact table will be changed to 1 row per patient per exam type per measurement.
According to Kimball, EAV design is called Fact Normalization. It may make sense when a number of measurements is extremely lengthy, but sparsely populated for a given fact and no computations are made between facts.
Because facts are normalized therefore:
Extensibility is very easy, i.e. it's easy to add new measurements without the need to amend the data structure.
It's good to extract all measurements for one exam and present measurements as rows on the screen.
It's hard to extract/aggregate/make computation between several measurements (e.g. average HDL to CHOL ration) and present measurements/aggregates/computations as columns, i.e. requires complex WHERE/PIVOTING or multi-joins. SQL makes it difficult to make computations between facts in different rows.
If primary end-user platform is an OLAP cube then Fact Normalization makes sense. The cubes allows to make computation across any dimension.
Data importing could be an issue if data format is in a flat style CSV.
This questions is also discussed here Should I use EAV model?.
3) Create smaller multiple fact tables per exam type per some other criteria like subgroup. But the end user is going to query across subgroups for that exam type and fact-fact join is not recommended.
In some scenarios multiple smaller fact tables perfectly makes sense. One of the reason is if you hit some physical limits set by platform, e.g. Bytes per row.
The facts could be grouped either by subject area, e.g. measurement group/subgroup, or by frequency of usage. Each table could be placed on a separate file group and drive to maximize I/O.
Further, you could duplicate measurements across different fact tables to reduce the need of fact tables join, i.e. put one measurement in a specific measurement subgroup fact table and in frequently used measurement fact table.
However some considerations should be taken into account if there are some specific requirements for data loading. For example, if a record errors out in your ETL to one fact table, you might want to make sure that the corresponding records in the other fact tables are deleted and staged to your error table so you don't end up with any bogus information. This is especially true if end users have their own calculations in the front end tool.
If you use OLAP cubes then multiple fact tables actually becomes a source of a measure group to a specific fact table.
In terms of fact-to-fact join, you (BI application) should never issue SQL that joins two fact tables together across the fact table’s foreign keys. Instead, the technique of Drilling Across two fact tables should be used, where the answer sets from two or more fact tables are separately created, and the results sort-merged on the common row header attribute values to produce the correct result.
More on this topic: http://www.kimballgroup.com/2003/04/the-soul-of-the-data-warehouse-part-two-drilling-across/
4) any other ideas?
SQL XML or some kind NoSQL could be an option, but the same querying / aggregation / computation / presentation issues exist.

Optimize Searching Through Rails Database

I'm building a rails project, and I have a database with a set of tables.. each holding between 500k and 1M rows, and i am constantly creating new rows.
By the nature of the project, before each creation, I have to search through the table for duplicates (for one field), so i don't create the same row twice. Unfortunately, as my table is growing, this is taking longer and longer.
I was thinking that I could optimize the search by adding indexes to the specific String fields through which i am searching.. but I have heard that adding indexes increases the creation time.
So my question is as follows:
What is the trade off with finding and creating rows which contain fields that are indexed? I know adding indexes to the fields will cause my program to be faster with the Model.find_by_name.. but how much slower will it make my row creation?
Indexing slows down insertation of entries because its required to add the entry to the index and that needs some ressources but once added they speed up your select queries, thats like you said BUT maybe the b-tree isnt the right choice for you! Because the B-Tree indexes the first X units of the indexed subject. Thats great when you have integers but text search is tricky. When you do queries like
Model.where("name LIKE ?", "#{params[:name]}%")
it will speed up selection but when you use queries like this:
Model.where("name LIKE ?", "%#{params[:name]}%")
it wont help you because you have to search the whole string which can be longer than some hundred chars and then its not an improvement to have the first 8 units of a 250 char long string indexed! So thats one thing. But theres another....
You should add a UNIQUE INDEX because the database is better in finding duplicates then ruby is! Its optimized for sorting and its definitifly the shorter and cleaner way to deal with this problem! Of cause you should also add a validation to the relevant model but thats not a reason to let things lide with the database.
// about index speed
http://dev.mysql.com/doc/refman/5.0/en/insert-speed.html
You dont have a large set of options. I dont think the insert speed loss will be that great when you only need one index! But the select speed will increase propotionall!

Resources