I try to implement a people detecting system based on SVM and HOG using OpenCV2.3. But I got stucked.
I came this far:
I can compute HOG values from an image database and then I calculate with LIBSVM the SVM vectors, so I get e.g. 1419 SVM vectors with 3780 values each.
OpenCV just wants one feature vector in the method hog.setSVMDetector(). Therefore I have to calculate one feature vector from my 1419 SVM vectors, that LIBSVM has calculated.
I found one hint, how to calculate this single feature vector: link
“The detecting feature vector at component i (where i is in the range e.g. 0-3779) is built out of the sum of the support vectors at i * the alpha value of that support vector, e.g.
det[i] = sum_j (sv_j[i] * alpha[j]) , where j is the number of the support vector, i
is the number of the components of the support vector.”
According to this, my routine works this way:
I take the first element of my first SVM vector, multiply it with the alpha value and add it with the first element of the second SVM vector that has been multiplied with alpha value, …
But after summing up all 1419 elements I get quite high values:
16.0657, -0.351117, 2.73681, 17.5677, -8.10134,
11.0206, -13.4837, -2.84614, 16.796, 15.0564,
8.19778, -0.7101, 5.25691, -9.53694, 23.9357,
If you compare them, to the default vector in the OpenCV sample peopledetect.cpp (and hog.cpp in the OpenCV source)
0.05359386f, -0.14721455f, -0.05532170f, 0.05077307f,
0.11547081f, -0.04268804f, 0.04635834f, -0.05468199f, 0.08232084f,
0.10424068f, -0.02294518f, 0.01108519f, 0.01378693f, 0.11193510f,
0.01268418f, 0.08528346f, -0.06309239f, 0.13054633f, 0.08100729f,
-0.05209739f, -0.04315529f, 0.09341384f, 0.11035026f, -0.07596218f,
-0.05517511f, -0.04465296f, 0.02947334f, 0.04555536f,
you see, that the default vector values are in the boundaries between –1 and +1, but my values exceed them far.
I think, my single feature vector routine needs some adjustment, any ideas?
Regards,
Christoph
The aggregated vector's values do look high.
I used the loadSVMfromModelFile() located in http://lnx.mangaitalia.net/trainer/main.cpp
I had to remove svinstr.sync(); from the code since it caused losing parts of the lines and getting wrong results.
I don't know much about the rest of the file, I only used this function.
Related
I am working on a project where I have to implement SVM machine learning algorithm. I am trying to predict the forearm movement intention. I am using accelometer (attached to my forearm) for measuring the angle change for x,y,z axes. I have never used machine before. The problem I am having is I do not exactly know how to structure the training set. I know the angle changes for each of the axis and I know i.e if x=45 degrees, y = 65 degrees, z=30 degrees gesture performed i performed is flexion. I would like to implement 3 gestures.So the data I am having is :
x y z Target
20 60 90 flexion
100 63 23 internal rotation
89 23 74 twist
.
.
.
.
I have a file with around 2000 entries. I know, I have to normalize the training set so the data are scaled. I would like to scale it so they are in range [0.9, 0.1]. The problem is that I do not know how to represent the target in my training set. Can I just use random numbers as 1 for flexion, 2 for internal rotation, 3 for twist??
Also once the training is completed, can I do the predictions based on values for x,y,z only?? without having to supply the target value. Is my understanding correct??
First of all, I suggest that you not scale or code your data. Leave it in human-readable form. Rather, write front-end routines to perform these tasks, and back-end routines to reverse the process. Also have internal routines that can display the data in the internal forms. Doing these up front will greatly enhance your debugging later on.
Yes, you will likely want to code your classifications as 1, 2, 3. Another possibility is to have a "one-hot" ordered triple: (1,0,0) or (0,1,0) or (0,0,1). However, most SVM algorithms are set up for scalar output. Also, note that the typical treatment for a multi-class algorithm is to run three separate SVM calculations, "one against all". For each class, you take that class as "plus" data and all the others as "minus" data.
Scaling data is important for regression convergence. If you're building your SVM via complete and direct computation of the support vectors, you don't need to scale numbers that are in compatible ranges, such as these. If you're doing it by some sort of iterative approximation, you still won't need it for this data -- but keep it in mind for the future.
Yes, prediction gives only the inputs: x, y, z. It will return the target classification. That's the purpose of supervised learning: summarize experience to classify the future.
I'm trying to reproduce results of paper Using Very Deep Auto encoders for
Content-Based Image Retrieval
I have some working code thanks to Theano framework, but I don't really know what is meant by the first step in their algorithm:
For each data-vector, v, in a mini-batch, stochastically pick a binary state
vector, h for the hidden units:
where bj is the bias, wij, is a weight, and sigma(x) = (1 + exp(-x))^-1.
I understand all parts of the equation. The only problem is how do I stochastically pick a binary state vector, given I know the probability of each element?
My idea is that for each element I generate random number, and if the number if higher than the probability, I will choose 1, otherwise 0. Is that correct?
I've been playing with some SVM implementations and I am wondering - what is the best way to normalize feature values to fit into one range? (from 0 to 1)
Let's suppose I have 3 features with values in ranges of:
3 - 5.
0.02 - 0.05
10-15.
How do I convert all of those values into range of [0,1]?
What If, during training, the highest value of feature number 1 that I will encounter is 5 and after I begin to use my model on much bigger datasets, I will stumble upon values as high as 7? Then in the converted range, it would exceed 1...
How do I normalize values during training to account for the possibility of "values in the wild" exceeding the highest(or lowest) values the model "seen" during training? How will the model react to that and how I make it work properly when that happens?
Besides scaling to unit length method provided by Tim, standardization is most often used in machine learning field. Please note that when your test data comes, it makes more sense to use the mean value and standard deviation from your training samples to do this scaling. If you have a very large amount of training data, it is safe to assume they obey the normal distribution, so the possibility that new test data is out-of-range won't be that high. Refer to this post for more details.
You normalise a vector by converting it to a unit vector. This trains the SVM on the relative values of the features, not the magnitudes. The normalisation algorithm will work on vectors with any values.
To convert to a unit vector, divide each value by the length of the vector. For example, a vector of [4 0.02 12] has a length of 12.6491. The normalised vector is then [4/12.6491 0.02/12.6491 12/12.6491] = [0.316 0.0016 0.949].
If "in the wild" we encounter a vector of [400 2 1200] it will normalise to the same unit vector as above. The magnitudes of the features is "cancelled out" by the normalisation and we are left with relative values between 0 and 1.
I developed a image processing program that identifies what a number is given an image of numbers. Each image was 27x27 pixels = 729 pixels. I take each R, G and B value which means I have 2187 variables from each image (+1 for the intercept = total of 2188).
I used the below gradient descent formula:
Repeat {
θj = θj−α/m∑(hθ(x)−y)xj
}
Where θj is the coefficient on variable j; α is the learning rate; hθ(x) is the hypothesis; y is real value and xj is the value of variable j. m is the number of training sets. hθ(x), y are for each training set (i.e. that's what the summation sign is for). Further the hypothesis is defined as:
hθ(x) = 1/(1+ e^-z)
z= θo + θ1X1+θ2X2 +θ3X3...θnXn
With this, and 3000 training images, I was able to train my program in just over an hour and when tested on a cross validation set, it was able to identify the correct image ~ 67% of the time.
I wanted to improve that so I decided to attempt a polynomial of degree 2.
However the number of variables jumps from 2188 to 2,394,766 per image! It takes me an hour just to do 1 step of gradient descent.
So my question is, how is this vast number of variables handled in machine learning? On the one hand, I don't have enough space to even hold that many variables for each training set. On the other hand, I am currently storing 2188 variables per training sample, but I have to perform O(n^2) just to get the values of each variable multiplied by another variable (i.e. the polynomial to degree 2 values).
So any suggestions / advice is greatly appreciated.
try to use some dimensionality reduction first (PCA, kernel PCA, or LDA if you are classifying the images)
vectorize your gradient descent - with most math libraries or in matlab etc. it will run much faster
parallelize the algorithm and then run in on multiple CPUs (but maybe your library for multiplying vectors already supports parallel computations)
Along with Jirka-x1's answer, I would first say that this is one of the key differences in working with image data than say text data for ML: high dimensionality.
Second... this is a duplicate, see How to approach machine learning problems with high dimensional input space?
I'm trying to use a method hierarchicalClustering from opencv 2.4.2.
It work without error, but the problem is, that I don't undertstand the parametrs it accepts eg. branching...
And i think it couses my problem that i get always just one cluster.
My input is a cv::Mat of LBPH features (for face detection) number of rows is 12 and number of cols is 6272.
No matter what is the value of branching factor I get always just one cluster and its centroid is mean of rows from input matrix grouppeed_one_ferson_features.
Could you advice ???
THANK a LOT!!!
heres the code:
cv::Mat groupped_one_person_features;
.... // fill grouppeed_one_ferson_features with data
int Nclusters=50;
cv::Mat centroids (Nclusters,Features.data[0][0].cols,CV_32FC1);
int count = cv::flann::hierarchicalClustering<cvflann::L1<float>>groupped_one_person_features,centroids,cvflann::KMeansIndexParams(2000,11,cvflann::FLANN_CENTERS_KMEANSPP));
First of all, you missed a parenthesis in your last line:
int count = cv::flann::hierarchicalClustering<cvflann::L1<float>>(groupped_one_person_features,centroids,cvflann::KMeansIndexParams(2000,11,cvflann::FLANN_CENTERS_KMEANSPP));
In the order, the parameters are (according to flann_base.hpp):
The points to be clustered
The computed cluster centers. Matrix should be preallocated and centers.rows is the number of clusters requested.
The clustering parameters
The distance to be used for clustering
Therefore, if you always get one cluster, it possibly means that your centroids matrix only has one row. Can you verify this?
The parameters of KMeansIndexParams are (according to kmeans_index.h):
branching factor: the number of children of a node in the tree
iterations: max iterations to perform in one kmeans clustering (kmeans tree)
centers_init: algorithm used for picking the initial cluster centers for kmeans tree
cb_index: cluster boundary index. Used when searching the kmeans tree