Can SVM solution change after shuffling the inputs? - opencv

When training a support vector machine (SVM) for classification with exactly the same data I obtain different results based on the order of the inputs, ie. if I shuffle the data I get different SVMs.
If I understood the theory correctly, the SVM solution should be the same regardless of the order of the inputs, so how come I get the different results? Is there any implementation "detail" in SVM why shuffling would change the solution? I have already checked my code several times, because I think this smells.
I use the SVM implementation in OpenCV.
EDIT: in this case, by shuffling I refer to changing the order of the data points not features.

I am not familiar with the OpenCV implementation. But do this: run several trials on exactly the same data set -- no shuffling, same order, same data points. See if the SVM changes. Obviously, in theory, it shouldn't. But it could be that there is some small randomization step somewhere in the implementation that produces different outputs for the same input.
Edit: As Chris A. asks, do the feature vectors correspond to their proper labels after shuffling? If not, that would obviously destroy your results.

SVM is for solving convex optimization problem, so maximum is unique. That means any random optimization algorithms will solve problem very close to unique optimal solution. And shuffling can't change result above float-point operation accuracy.

Related

Prediction of Stock Returns with ML Algrithm

I am working on a prediction model for stock returns over a fixed period of time (say n days). I am was hoping to gather a few ideas ahead of time. My questions are:
1) Would it be best to turn this into a classification problem, say create a dummy variable with returns larger than x%? Then I could try the entire arsenal of ML Algorithms.
2) If I don't turn it into a classification problem but use say a regression model, would it make sense or be necessary to transform the returns into logs?
Any thoughts are appreciated.
EDIT: My goal with this is relatively broadly defined, in the sense that I would simple like to improve performance of the selection process (pick positive returns and avoid negative ones)
Best under what quality? Turning it into a thresholding problem simply means translating the problem space to a much simpler one. Your problem definition is your own; you can turn it into a binary classification problem (>x or not), a multi-class classification problem (binning into ranges) or simply keep it as a prediction task. If you do the latter, you can still apply binning or classification as a post-processing step.
Classification is just a subclass of prediction. The log transformation employed by logistic regression is no more than a neat trick to turn the outputs into something that resembles a probability distribution; don't put too much thought into it. That said, applying transformations on your output is not necessarily bad (you could for instance apply some normalization to keep your output within the range of some activation function).

Do you have any suggestions for a Machine Learning method that may actually learn to distinguish these two classes?

I have a dataset that overlaps a lot. So far my results with SVM are not good. Do you have any recomendations for a model that may be able to differ between these 2 datasets?
Scatter plot from both classes
It is easy to fit the dataset by interpolation of one of the classes and predicting the other one otherwise. The problem with this approach is though, that it will not generalize well. The question you have to ask yourself is, if you can predict the class of a point given its attributes. If not then every ML algorithm will also fail to do so.
Then the only reasonable thing you can do is to collect more data and more attributes for every point. Maybe by adding a third dimension you can seperate the data more easily.
If the data is overlapping so much, both should be of the same class, but we know they are not. So, there is/are some feature(s) or variable(s) that is/are separating these data points into two classes. Try to add more features for data.
And sometimes, just transforming the data into a different scale can help.
Both the classes need not be equally distributed, as skewed data distribution can be handled separately.
First of all, what is your criterion for "good results"? What style of SVM did you use? Simple linear will certainly fail for most concepts of "good", but a seriously convoluted Gaussian kernel might dredge something out of the handfuls of contiguous points in the upper regions of the plot.
I suggest that you run some basic statistics on the data you've presented, to see whether they're actually as separable as you'd want. I suggest a T-test for starters.
If you have other dimensions, I strongly recommend that you use them. Start with the greatest amount of input you can handle, and reduce from there (principal component analysis). Until we know the full shape and distribution of the data, there's not much hope of identifying a useful algorithm.
That said, I'll make a pre-emptive suggestion that you look into spectral clustering algorithms when you add the other dimensions. Some are good with density, some with connectivity, while others key on gaps.

Machine learning: Which algorithm is used to identify relevant features in a training set?

I've got a problem where I've potentially got a huge number of features. Essentially a mountain of data points (for discussion let's say it's in the millions of features). I don't know what data points are useful and what are irrelevant to a given outcome (I guess 1% are relevant and 99% are irrelevant).
I do have the data points and the final outcome (a binary result). I'm interested in reducing the feature set so that I can identify the most useful set of data points to collect to train future classification algorithms.
My current data set is huge, and I can't generate as many training examples with the mountain of data as I could if I were to identify the relevant features, cut down how many data points I collect, and increase the number of training examples. I expect that I would get better classifiers with more training examples given fewer feature data points (while maintaining the relevant ones).
What machine learning algorithms should I focus on to, first,
identify the features that are relevant to the outcome?
From some reading I've done it seems like SVM provides weighting per feature that I can use to identify the most highly scored features. Can anyone confirm this? Expand on the explanation? Or should I be thinking along another line?
Feature weights in a linear model (logistic regression, naive Bayes, etc) can be thought of as measures of importance, provided your features are all on the same scale.
Your model can be combined with a regularizer for learning that penalises certain kinds of feature vectors (essentially folding feature selection into the classification problem). L1 regularized logistic regression sounds like it would be perfect for what you want.
Maybe you can use PCA or Maximum entropy algorithm in order to reduce the data set...
You can go for Chi-Square tests or Entropy depending on your data type. Supervized discretization highly reduces the size of your data in a smart way (take a look into Recursive Minimal Entropy Partitioning algorithm proposed by Fayyad & Irani).
If you work in R, the SIS package has a function that will do this for you.
If you want to do things the hard way, what you want to do is feature screening, a massive preliminary dimension reduction before you do feature selection and model selection from a sane-sized set of features. Figuring out what is the sane-size can be tricky, and I don't have a magic answer for that, but you can prioritize what order you'd want to include the features by
1) for each feature, split the data in two groups by the binary response
2) find the Komogorov-Smirnov statistic comparing the two sets
The features with the highest KS statistic are most useful in modeling.
There's a paper "out there" titled "A selctive overview of feature screening for ultrahigh-dimensional data" by Liu, Zhong, and Li, I'm sure a free copy is floating around the web somewhere.
4 years later I'm now halfway through a PhD in this field and I want to add that the definition of a feature is not always simple. In the case that your features are a single column in your dataset, the answers here apply quite well.
However, take the case of an image being processed by a convolutional neural network, for example, a feature is not one pixel of the input, rather it's much more conceptual than that. Here's a nice discussion for the case of images:
https://medium.com/#ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721

One versus rest classifier

I'm implementing an one-versus-rest classifier to discriminate between neural data corresponding (1) to moving a computer cursor up and (2) to moving it in any of the other seven cardinal directions or no movement. I'm using an SVM classifier with an RBF kernel (created by LIBSVM), and I did a grid search to find the best possible gamma and cost parameters for my classifier. I have tried using training data with 338 elements from each of the two classes (undersampling my large "rest" class) and have used 338 elements from my first class and 7218 from my second one with a weighted SVM.
I have also used feature selection to bring the number of features I'm using down from 130 to 10. I tried using the ten "best" features and the ten "worst" features when training my classifier. I have also used the entire feature set.
Unfortunately, my results are not very good, and moreover, I cannot find an explanation why. I tested with 37759 data points, where 1687 of them came from the "one" (i.e. "up") class and the remaining 36072 came from the "rest" class. In all cases, my classifier is 95% accurate BUT the values that are predicted correctly all fall into the "rest" class (i.e. all my data points are predicted as "rest" and all the values that are incorrectly predicted fall in the "one"/"up" class). When I tried testing with 338 data points from each class (the same ones I used for training), I found that the number of support vectors was 666, which is ten less than the number of data points. In this case, the percent accuracy is only 71%, which is unusual since my training and testing data are the exact same.
Do you have any idea what could be going wrong? If you have any suggestions, please let me know.
Thanks!
Test dataset being same as training data implies your training accuracy was 71%. There is nothing wrong about it as the data was possibly not well separable by the kernel you used.
However, one point of concern is the number of support vectors being high suggests probable overfitting .
Not sure if this amounts to an answer - it would probably be hard to give one without actually seeing the data - but here are some ideas regarding the issue you describe:
In general, SVM tries to find a hyperplane that would best separate your classes. However, since you have opted for 1vs1 classification, you have no choice but to mix all negative cases together (your 'rest' class). This might make the 'best' separation much less fit to solve your problem. I'm guessing that this might be a major issue here.
To verify if that's the case, I suggest trying to use only one other cardinal direction as the negative set, and see if that improves results. In case it does, you can train 7 classifiers, one for each direction. Another option might be to use the multiclass option of libSVM, or a tool like SVMLight, which is able to classify one against many.
One caveat of most SVM implementations is their inability to support big differences between the positive and negative sets, even with weighting. From my experience, weighting factors of over 4-5 are problematic in many cases. On the other hand, since your variety in the negative side is large, taking equal sizes might also be less than optimal. Thus, I'd suggest using something like 338 positive examples, and around 1000-1200 random negative examples, with weighting.
A little off your question, I would have considered also other types of classification. To start with, I'd suggest thinking about knn.
Hope it helps :)

How to approach machine learning problems with high dimensional input space?

How should I approach a situtation when I try to apply some ML algorithm (classification, to be more specific, SVM in particular) over some high dimensional input, and the results I get are not quite satisfactory?
1, 2 or 3 dimensional data can be visualized, along with the algorithm's results, so you can get the hang of what's going on, and have some idea how to aproach the problem. Once the data is over 3 dimensions, other than intuitively playing around with the parameters I am not really sure how to attack it?
What do you do to the data? My answer: nothing. SVMs are designed to handle high-dimensional data. I'm working on a research problem right now that involves supervised classification using SVMs. Along with finding sources on the Internet, I did my own experiments on the impact of dimensionality reduction prior to classification. Preprocessing the features using PCA/LDA did not significantly increase classification accuracy of the SVM.
To me, this totally makes sense from the way SVMs work. Let x be an m-dimensional feature vector. Let y = Ax where y is in R^n and x is in R^m for n < m, i.e., y is x projected onto a space of lower dimension. If the classes Y1 and Y2 are linearly separable in R^n, then the corresponding classes X1 and X2 are linearly separable in R^m. Therefore, the original subspaces should be "at least" as separable as their projections onto lower dimensions, i.e., PCA should not help, in theory.
Here is one discussion that debates the use of PCA before SVM: link
What you can do is change your SVM parameters. For example, with libsvm link, the parameters C and gamma are crucially important to classification success. The libsvm faq, particularly this entry link, contains more helpful tips. Among them:
Scale your features before classification.
Try to obtain balanced classes. If impossible, then penalize one class more than the other. See more references on SVM imbalance.
Check the SVM parameters. Try many combinations to arrive at the best one.
Use the RBF kernel first. It almost always works best (computationally speaking).
Almost forgot... before testing, cross validate!
EDIT: Let me just add this "data point." I recently did another large-scale experiment using the SVM with PCA preprocessing on four exclusive data sets. PCA did not improve the classification results for any choice of reduced dimensionality. The original data with simple diagonal scaling (for each feature, subtract mean and divide by standard deviation) performed better. I'm not making any broad conclusion -- just sharing this one experiment. Maybe on different data, PCA can help.
Some suggestions:
Project data (just for visualization) to a lower-dimensional space (using PCA or MDS or whatever makes sense for your data)
Try to understand why learning fails. Do you think it overfits? Do you think you have enough data? Is it possible there isn't enough information in your features to solve the task you are trying to solve? There are ways to answer each of these questions without visualizing the data.
Also, if you tell us what the task is and what your SVM output is, there may be more specific suggestions people could make.
You can try reducing the dimensionality of the problem by PCA or the similar technique. Beware that PCA has two important points. (1) It assumes that the data it is applied to is normally distributed and (2) the resulting data looses its natural meaning (resulting in a blackbox). If you can live with that, try it.
Another option is to try several parameter selection algorithms. Since SVM's were already mentioned here, you might try the approach of Chang and Li (Feature Ranking Using Linear SVM) in which they used linear SVM to pre-select "interesting features" and then used RBF - based SVM on the selected features. If you are familiar with Orange, a python data mining library, you will be able to code this method in less than an hour. Note that this is a greedy approach which, due to its "greediness" might fail in cases where the input variables are highly correlated. In that case, and if you cannot solve this problem with PCA (see above), you might want to go to heuristic methods, which try to select best possible combinations of predictors. The main pitfall of this kind of approaches is the high potential of overfitting. Make sure you have a bunch "virgin" data that was not seen during the entire process of model building. Test your model on that data only once, after you are sure that the model is ready. If you fail, don't use this data once more to validate another model, you will have to find a new data set. Otherwise you won't be sure that you didn't overfit once more.
List of selected papers on parameter selection:
Feature selection for high-dimensional genomic microarray data
Oh, and one more thing about SVM. SVM is a black box. You better figure out what is the mechanism that generate the data and model the mechanism and not the data. On the other hand, if this would be possible, most probably you wouldn't be here asking this question (and I wouldn't be so bitter about overfitting).
List of selected papers on parameter selection
Feature selection for high-dimensional genomic microarray data
Wrappers for feature subset selection
Parameter selection in particle swarm optimization
I worked in the laboratory that developed this Stochastic method to determine, in silico, the drug like character of molecules
I would approach the problem as follows:
What do you mean by "the results I get are not quite satisfactory"?
If the classification rate on the training data is unsatisfactory, it implies that either
You have outliers in your training data (data that is misclassified). In this case you can try algorithms such as RANSAC to deal with it.
Your model(SVM in this case) is not well suited for this problem. This can be diagnozed by trying other models (adaboost etc.) or adding more parameters to your current model.
The representation of the data is not well suited for your classification task. In this case preprocessing the data with feature selection or dimensionality reduction techniques would help
If the classification rate on the test data is unsatisfactory, it implies that your model overfits the data:
Either your model is too complex(too many parameters) and it needs to be constrained further,
Or you trained it on a training set which is too small and you need more data
Of course it may be a mixture of the above elements. These are all "blind" methods to attack the problem. In order to gain more insight into the problem you may use visualization methods by projecting the data into lower dimensions or look for models which are suited better to the problem domain as you understand it (for example if you know the data is normally distributed you can use GMMs to model the data ...)
If I'm not wrong, you are trying to see which parameters to the SVM gives you the best result. Your problem is model/curve fitting.
I worked on a similar problem couple of years ago. There are tons of libraries and algos to do the same. I used Newton-Raphson's algorithm and a variation of genetic algorithm to fit the curve.
Generate/guess/get the result you are hoping for, through real world experiment (or if you are doing simple classification, just do it yourself). Compare this with the output of your SVM. The algos I mentioned earlier reiterates this process till the result of your model(SVM in this case) somewhat matches the expected values (note that this process would take some time based your problem/data size.. it took about 2 months for me on a 140 node beowulf cluster).
If you choose to go with Newton-Raphson's, this might be a good place to start.

Resources