I need to do matrix operations (mainly multiply and inverse) of a sparse matrix SparseMat in OpenCV.
I noticed that you can only iterate and insert values to SparseMat.
Is there an external code I can use? (or am I missing something?)
It's just that sparse matrices are not really suited for inversion or matrix-matrix-multiplication, so it's quite reasonable there is no builtin function for that. They're actually more used for matrix-vector multiplication (usually when solving iterative linear systems).
What you can do is solve N linear systems (with the columns of the identity matrix as right hand sides) to get the inverse matrix. But then you need N*N storage for the inverse matrix anyway, so using a dense matrix with a usual decompositions algorithm would be a better way to do it, as the performance gain won't be that high when doing N iterative solutions. Or maybe some sparse direct solvers like SuperLU or TAUCS may help, but I doubt that OpenCV has such functionalities.
You should also think if you really need the inverse matrix. Often such problem are also solvable by just solving a linear system, which can be done with a sparse matrix quite easily and fast via e.g. CG or BiCGStab.
You can convert a SparseMat to a Mat, do what operations you need and then convert back.
you can use Eigen library directly. Eigen works together with OpenCV very well.
Related
PREMISE:
I'm really new to Computer Vision/Image Processing and Machine Learning (luckily, I'm more expert on Information retrieval), so please be kind with this filthy peasant! :D
MY APPLICATION:
We have a mobile application where the user takes a photo (the query) and the system returns the most similar picture thas was previously taken by some other user (the dataset element). Time performances are crucial, followed by precision and finally by memory usage.
MY APPROACH:
First of all, it's quite obvious that this is a 1-Nearest Neighbor problem (1-NN). LSH is a popular, fast and relatively precise solution for this problem. In particular, my LSH impelementation is about using Kernalized Locality Sensitive Hashing to achieve a good precision to translate a d-dimension vector to a s-dimension binary vector (where s<<d) and then use Fast Exact Search in Hamming Space
with Multi-Index Hashing to quickly find the exact nearest neighbor between all the vectors in the dataset (transposed to hamming space).
In addition, I'm going to use SIFT since I want to use a robust keypoint detector&descriptor for my application.
WHAT DOES IT MISS IN THIS PROCESS?
Well, it seems that I already decided everything, right? Actually NO: in my linked question I face the problem about how to represent the set descriptor vectors of a single image into a vector. Why do I need it? Because a query/dataset element in LSH is vector, not a matrix (while SIFT keypoint descriptor set is a matrix). As someone suggested in the comments, the commonest (and most efficient) solution is using the Bag of Features (BoF) model, which I'm still not confident with yet.
So, I read this article, but I have still some questions (see QUESTIONS below)!
QUESTIONS:
First and most important question: do you think that this is a reasonable approach?
Is k-means used in the BoF algorithm the best choice for such an application? What are alternative clustering algorithms?
The dimension of the codeword vector obtained by the BoF is equal to the number of clusters (so k parameter in the k-means approach)?
If 2. is correct, bigger is k then more precise is the BoF vector obtained?
There is any "dynamic" k-means? Since the query image must added to the dataset after the computation is done (remember: the dataset is formed by the images of all submitted queries) the cluster can change in time.
Given a query image, is the process to obtain the codebook vector the same as the one for a dataset image, e.g. we assign each descriptor to a cluster and the i-th dimension of the resulting vector is equal to the number of descriptors assigned to the i-th cluster?
It looks like you are building codebook from a set of keypoint features generated by SIFT.
You can try "mixture of gaussians" model. K-means assumes that each dimension of a keypoint is independent while "mixture of gaussians" can model the correlation between each dimension of the keypoint feature.
I can't answer this question. But I remember that the SIFT keypoint, by default, has 128 dimensions. You probably want a smaller number of clusters like 50 clusters.
N/A
You can try Infinite Gaussian Mixture Model or look at this paper: "Revisiting k-means: New Algorithms via Bayesian Nonparametrics" by Brian Kulis and Michael Jordan!
Not sure if I understand this question.
Hope this help!
I am new to machine learning field and right now trying to get a grasp of how the most common learning algorithms work and understand when to apply each one of them. At the moment I am learning on how Support Vector Machines work and have a question on custom kernel functions.
There is plenty of information on the web on more standard (linear, RBF, polynomial) kernels for SVMs. I, however, would like to understand when it is reasonable to go for a custom kernel function. My questions are:
1) What are other possible kernels for SVMs?
2) In which situation one would apply custom kernels?
3) Can custom kernel substantially improve prediction quality of SVM?
1) What are other possible kernels for SVMs?
There are infinitely many of these, see for example list of ones implemented in pykernels (which is far from being exhaustive)
https://github.com/gmum/pykernels
Linear
Polynomial
RBF
Cosine similarity
Exponential
Laplacian
Rational quadratic
Inverse multiquadratic
Cauchy
T-Student
ANOVA
Additive Chi^2
Chi^2
MinMax
Min/Histogram intersection
Generalized histogram intersection
Spline
Sorensen
Tanimoto
Wavelet
Fourier
Log (CPD)
Power (CPD)
2) In which situation one would apply custom kernels?
Basically in two cases:
"simple" ones give very bad results
data is specific in some sense and so - in order to apply traditional kernels one has to degenerate it. For example if your data is in a graph format, you cannot apply RBF kernel, as graph is not a constant-size vector, thus you need a graph kernel to work with this object without some kind of information-loosing projection. also sometimes you have an insight into data, you know about some underlying structure, which might help classifier. One such example is a periodicity, you know that there is a kind of recuring effect in your data - then it might be worth looking for a specific kernel etc.
3) Can custom kernel substantially improve prediction quality of SVM?
Yes, in particular there always exists a (hypothethical) Bayesian optimal kernel, defined as:
K(x, y) = 1 iff arg max_l P(l|x) == arg max_l P(l|y)
in other words, if one has a true probability P(l|x) of label l being assigned to a point x, then we can create a kernel, which pretty much maps your data points onto one-hot encodings of their most probable labels, thus leading to Bayes optimal classification (as it will obtain Bayes risk).
In practise it is of course impossible to get such kernel, as it means that you already solved your problem. However, it shows that there is a notion of "optimal kernel", and obviously none of the classical ones is not of this type (unless your data comes from veeeery simple distributions). Furthermore, each kernel is a kind of prior over decision functions - closer you get to the actual one with your induced family of functions - the more probable is to get a reasonable classifier with SVM.
We need to multiply a large matrix with a one-dimensional vector. The large matrix is sparse. In a second scenario, we need to multiply two large matrices, both of which are sparse. And in the third scenario, we need to multiply two large matrices both of which are dense.
Apache Spark seems to provide a built-in data type for matrices (including a specialized one for sparse matrices) as well as what seems to be a very rich set of libraries for matrix linear algebra (multiplication, addition, transposition, etc.)
How can one efficiently do the matrix multiplications (or other linear algebra operations for matrixes) on Google Cloud DataFlow for the three scenarios described above?
Dataflow currently doesn't support matrix operations natively. That said, it should be possible to implement these operations similarly to spark.
For sparse matrices, it should be possible to key by the (x,y) coordinate, and then do a GroupByKey.
For dense matrices, you can divide the matrix into blocks, use a GroupByKey to group the blocks, and then use a native library (such as BLAS) to implement the multiplication on the blocks.
See BlockMatrix for more information on how the block operations are implemented in Spark.
The following method should work on dataflow.
I got Memory Error when I was running dbscan algorithm of scikit.
My data is about 20000*10000, it's a binary matrix.
(Maybe it's not suitable to use DBSCAN with such a matrix. I'm a beginner of machine learning. I just want to find a cluster method which don't need an initial cluster number)
Anyway I found sparse matrix and feature extraction of scikit.
http://scikit-learn.org/dev/modules/feature_extraction.html
http://docs.scipy.org/doc/scipy/reference/sparse.html
But I still have no idea how to use it. In DBSCAN's specification, there is no indication about using sparse matrix. Is it not allowed?
If anyone knows how to use sparse matrix in DBSCAN, please tell me.
Or you can tell me a more suitable cluster method.
The scikit implementation of DBSCAN is, unfortunately, very naive. It needs to be rewritten to take indexing (ball trees etc.) into account.
As of now, it will apparently insist of computing a complete distance matrix, which wastes a lot of memory.
May I suggest that you just reimplement DBSCAN yourself. It's fairly easy, there exists good pseudocode e.g. on Wikipedia and in the original publication. It should be just a few lines, and you can then easily take benefit of your data representation. E.g. if you already have a similarity graph in a sparse representation, it's usually fairly trivial to do a "range query" (i.e. use only the edges that satisfy your distance threshold)
Here is a issue in scikit-learn github where they talk about improving the implementation. A user reports his version using the ball-tree is 50x faster (which doesn't surprise me, I've seen similar speedups with indexes before - it will likely become more pronounced when further increasing the data set size).
Update: the DBSCAN version in scikit-learn has received substantial improvements since this answer was written.
You can pass a distance matrix to DBSCAN, so assuming X is your sample matrix, the following should work:
from sklearn.metrics.pairwise import euclidean_distances
D = euclidean_distances(X, X)
db = DBSCAN(metric="precomputed").fit(D)
However, the matrix D will be even larger than X: n_samplesĀ² entries. With sparse matrices, k-means is probably the best option.
(DBSCAN may seem attractive because it doesn't need a pre-determined number of clusters, but it trades that for two parameters that you have to tune. It's mostly applicable in settings where the samples are points in space and you know how close you want those points to be to be in the same cluster, or when you have a black box distance metric that scikit-learn doesn't support.)
Yes, since version 0.16.1.
Here's a commit for a test:
https://github.com/scikit-learn/scikit-learn/commit/494b8e574337e510bcb6fd0c941e390371ef1879
Sklearn's DBSCAN algorithm doesn't take sparse arrays. However, KMeans and Spectral clustering do, you can try these. More on sklearns clustering methods: http://scikit-learn.org/stable/modules/clustering.html
Hello I am working on a project involving in face recognition for which I am using Linear Discriminant Analysis(LDA). LDA demands to find the generalized eigen vectors for the between class scatter matrix and with in class scatter matrix and that is where I am struck. I am using opencv with DevC++ for coding. Basically the problem looks like
A*v=lambda*B*v
where A and B are matrices for which generalized eigen vectors should be found
lambda is eigen values and v is vectors
Upon searching about this problem many people suggested to go for calculating the inverse of B and then multiplying with A*v
(inv(B)*A)*v=lambda*v
and then calculate eigen vectors for inv(B)*A.
It seems to be a good solution but in my case the scatter matrix B is almost sigular. I found its determinant is in the order of 10^-36 .So I cant find its inverse and proceed with the above solution. So Can some one suggest me a way to get out of this problem except saying to code for generalized eigen value problem separately.
I am providing a Fisherfaces implementation in my github repository at https://github.com/bytefish/opencv/tree/master/lda. This includes the implementation of an eigenvalue solver for general matrices, see: https://github.com/bytefish/opencv/blob/master/lda/include/decomposition.hpp (I've ported the great JAMA solver), which is exactely what you are looking for.
If you have problems with the code, please drop me a note on the projects page at http://www.bytefish.de/blog/fisherfaces_in_opencv.