Registration of Real Objects in video frame - opencv

I would like to ask if it is possible to deal inside openCV with the registration of an virtual object into a real image(real world object).
After detecting the region of interest in a real captured image frame, I would like to substitute the pixels of the real image by the pixels of a virtual object which should appear as a real part of the new generated image.
plz he

For sure, (almost) everything is possible if you program it by yourself. However if you expect an on the shelf solution from OpenCV it doesn't exist...
What you are talking about is called : pose-estimation
Depending on the context of your problem, it can be very difficult to do (depending on your computer sciences skills as well)
Instead of a very very long explanation, I think the best is to look at this :
Foundations about 2D-3D Pose Estimation
Posit tutorial with OpenGL and OpenCV
An excellent presentation to understand the context of Pose Estimation
You should try to look at what the field of virtual/augmented reality is, i think it could answer some of your questions... I don't have better answers as your question is very very wide.
Moreover a last tip would be to look at features detection and extraction as a lot of these techniques rely on a good detection of keypoints (to then replace a 2D-3D model into the scene)
Julien,

Related

Position Estimation From Multiple Images

First off, I'd like to state that I'm very new to this field and apologize if the question is a little too repetitive. I've looked around but in vain. I'm working on reading Hartley and Zisserman's book but it's taking me a while.
My problem is That I've got 3 Video Sources of an area and I need to find the camera position at each frame of the video. I do not have any information about the cameras that took the videos (i.e no Intrinsics).
Looking for a solution I came across SfM and tried existing software that exists namely Bundler & Vsfm and they both seem to have worked quite well. However I've got a couple of questions about it.
1) Is SfM really required in my case? Since SfM does a sparse reconstruction and the common points between images are also an output, is it fully necessary? or are there more suitable methods that can do it without since positions are all I really need? Or are there less complex methods I may use instead?
2) From what I've read, I need to calibrate the camera and find it's Intrinsics and Extrinsics. How can I do this without knowing either? I've looked at the 5-pt problem and others but most of them require you to know the intrinsic properties of the camera which I don't have and I cannot use a pattern such as a chessboard to calibrate them since they come from a source outside my control.
Thanks for your time!
Based on my experience, the short answer is:
1) You cannot reliably estimate the 3D pose of the cameras independently from the 3D of the scene. Moreover, since your cameras are moving independently, I think SfM is the right way to approach your problem.
2) You need to estimate the cameras' intrinsics in order to estimate useful (i.e. Euclidian) poses and scene reconstruction. If you cannot use the standard calibration procedure, with chessboard and co, you can have a look at the autocalibration techniques (see also chapter 19 in Hartley's & Zisserman's book). This calibration procedure is done independently for each camera and only require several image samples at different positions, which seems appropriate in your case.
You can actually accomplish your task in a massive bundle adjacent procedure up to a scaling parameter. But is is a very complicated thing even if you aren't novice. You dont need 3d reconstruction, just an essential matrix that can be obtained from 2d projections and decomposed i to rotation and translation but this does require Iintrinsic Paramus. To get them you have to have at least three frames.
Finally, Drop Zimmerman book it will drive you crazy. Read Simon Princes "Computer Vision"instead.

Using the coca cola logo as the calibration pattern for camera

I am looking for camera calibration techniques with OpenCV and saw the chessboard and circles methods, but I wanted to calibrate the camera with something that is in the real world and you don't have to print (printers are also not very accurate in what they print).
Is it possible to do calibration with complex shapes like the Coca Cola logo on the cans? Is it a problem that the surface is curved?
Thanks
Depending on what you want to achieve this is not at all necessarily a bad idea, and you are not the first one who had it. There was a technology that uses a CD, which is a strongly standardised object which at least used to exist on most households, for a simple camera calibration task. (There is little technical to be found online about this, as the technology was proprietary. This is business document, where the use of the CD is mentioned. Algorithmically, however, it is not difficult if you know camera calibration.)
The question is whether the precision you get is sufficient for your application. Don't expect any miracles here. Generally you can use almost any object you like to learn something about a camera, as long as you can detect it reliably and you know its geometry. Almost certainly you will have to take several pictures of the object. Curved surfaces are no problem per see. I regularly used a cylinder (larger than a beverage can, though, with a simple to detect pattern) to calibrate a complete camera rig of 12 SLRs.
Don't expect to find out of the box solutions and don't expect implementation to be trivial. You will have to work your way through the math. I recommend the book by Hartley and Zisserman, Multiple View Geometry for Computer vision. This paper describes an analysis-by-synthesis approach to calibration, which is the way to go for here (it does not describe exactly what you want, but the approach should generalise to arbitrary objects as long as you can detect them).
i can understand your wish, but it's a bad idea.
the calibration algorithm works by comparing real world points from the cam with a synthetical model ( yes, you have to supply that , too! ). so, while it's easy to calculate a 2d chessboard grid on the fly and use that, it will be very hard to do for your tin can, or any arbitrary household item you grab.
just give in, and print a rectangular chessbord grid to a piece of paper
(opencv comes with a pdf for that already).
don't use a real-life chessboard, a quadratic one is ambiguous to 90° rotation.
interesting idea.
What about displaying a checkerboard pattern (or sth else) on an lcd screen display and use that display as calibration pattern?? You would have to know the displaying size of the pattern though.
Googling I found this paper:
CAMERA CALIBRATION BASED ON LIQUID CRYSTAL DISPLAY (LCD)
ZHAN Zongqian
http://www.isprs.org/proceedings/XXXVII/congress/3b_pdf/04.pdf
comment: this doesn't answer the question about the coca-cola can but gives and idea for a solution to the grounding problem: camera calibration with a common object.

Structure from Motion (SfM) in a tunnel-like structure?

I have a very specific application in which I would like to try structure from motion to get a 3D representation. For now, all the software/code samples I have found for structure from motion are like this: "A fixed object that is photographed from all angle to create the 3D". This is not my case.
In my case, the camera is moving in the middle of a corridor and looking forward. Sometimes, the camera can look on other direction (Left, right, top, down). The camera will never go back or look back, it always move forward. Since the corridor is small, almost everything is visible (no hidden spot). The corridor can be very long sometimes.
I have tried this software and it doesn't work in my particular case (but it's fantastic with normal use). Does anybody can suggest me a library/software/tools/paper that could target my specific needs? Or did you ever needed to implement something like that? Any help is welcome!
Thanks!
What kind of corridors are you talking about and what kind of precision are you aiming for?
A priori, I don't see why your corridor would not be a fixed object photographed from different angles. The quality of your reconstruction might suffer if you only look forward and you can't get many different views of the scene, but standard methods should still work. Are you sure that the programs you used aren't failing because of your picture quality, arrangement or other reasons?
If you have to do the reconstruction yourself, I would start by
1) Calibrating your camera
2) Undistorting your images
3) Matching feature points in subsequent image pairs
4) Extracting a 3D point cloud for each image pair
You can then orient the point clouds with respect to one another, for example via ICP between two subsequent clouds. More sophisticated methods might not yield much difference if you don't have any closed loops in your dataset (as your camera is only moving forward).
OpenCV and the Point Cloud Library should be everything you need for these steps. Visualization might be more of a hassle, but the pretty pictures are what you pay for in commercial software after all.
Edit (2017/8): I haven't worked on this in the meantime, but I feel like this answer is missing some pieces. If I had to answer it today, I would definitely suggest looking into the keyword monocular SLAM, which has recently seen a lot of activity, not least because of drones with cameras. Notably, LSD-SLAM is open source and may not be as vulnerable to feature-deprived views, as it operates directly on the intensity. There even seem to be approaches combining inertial/odometry sensors with the image matching algorithms.
Good luck!
FvD is right in the sense that your corridor is a static object. Your scenario is the same and moving around and object and taking images from multiple views. Your views are just not arranged to provide a 360 degree view of the object.
I see you mentioned in your previous comment that the data is coming from a video? In that case, the problem could very well be the camera calibration. A camera calibration tells the SfM algorithm about the internal parameters of the camera (focal length, principal point, lens distortion etc.) In the absence of knowledge about these, the bundler in VSfM uses information from the EXIF data of the image. However, I don't think video stores any EXIF information (not a 100% sure). As a result, I think the entire algorithm is running with bad focal length information and cannot solve for the orientation.
Can you extract a few frames from the video and see if there is any EXIF information?

single person tracking from video sequence

As a part of my thesis work, I need to build a program for human tracking from video or image sequence like the KTH or IXMAS dataset with the assumptions:
Illumination remains unchanged
Only one person appear in the scene
The program need to perform in real-time
I have searched a lot but still can not find a good solution.
Please suggest me a good method or an existing program that is suitable.
Case 1 - If camera static
If the camera is static, it is really simple to track one person.
You can apply a method called background subtraction.
Here, for better results, you need a bare image from camera, with no persons in it. It is the background. ( It can also be done, even if you don't have this background image. But if you have it, better. I will tell at end what to do if no background image)
Now start capture from camera. Take first frame,convert both to grayscale, smooth both images to avoid noise.
Subtract background image from frame.
If the frame has no change wrt background image (ie no person), you get a black image ( Of course there will be some noise, we can remove it). If there is change, ie person walked into frame, you will get an image with person and background as black.
Now threshold the image for a suitable value.
Apply some erosion to remove small granular noise. Apply dilation after that.
Now find contours. Most probably there will be one contour,ie the person.
Find centroid or whatever you want for this person to track.
Now suppose you don't have a background image, you can find it using cvRunningAvg function. It finds running average of frames from your video which you use to track. But you can obviously understand, first method is better, if you get background image.
Here is the implementation of above method using cvRunningAvg.
Case 2 - Camera not static
Here background subtraction won't give good result, since you can't get a fixed background.
Then OpenCV come with a sample for people detection sample. Use it.
This is the file: peopledetect.cpp
I also recommend you to visit this SOF which deals with almost same problem: How can I detect and track people using OpenCV?
One possible solution is to use feature points tracking algorithm.
Look at this book:
Laganiere Robert - OpenCV 2 Computer Vision Application Programming Cookbook - 2011
p. 266
Full algorithm is already implemented in this book, using opencv.
The above method : a simple frame differencing followed by dilation and erosion would work, in case of a simple clean scene with just the motion of the person walking with absolutely no other motion or illumination changes. Also you are doing a detection every frame, as opposed to tracking. In this specific scenario, it might not be much more difficult to track either. Movement direction and speed : you can just run Lucas Kanade on the difference images.
At the core of it, what you need is a person detector followed by a tracker. Tracker can be either point based (Lucas Kanade or Horn and Schunck) or using Kalman filter or any of those kind of tracking for bounding boxes or blobs.
A lot of vision problems are ill-posed, some some amount of structure/constraints, helps to solve it considerably faster. Few questions to ask would be these :
Is the camera moving : No quite easy, Yes : Much harder, exactly what works depends on other conditions.
Is the scene constant except for the person
Is the person front facing / side-facing most of the time : Detect using viola jones or train one (adaboost with Haar or similar features) for side-facing face.
How spatially accurate do you need it to be, will a bounding box do it, or do you need a contour : Bounding box : just search (intelligently :)) in neighbourhood with SAD (sum of Abs Differences). Contour : Tougher, use contour based trackers.
Do you need the "tracklet" or only just the position of the person at each frame, temporal accuracy ?
What resolution are we speaking about here, since you need real time :
Is the scene sparse like the sequences or would it be cluttered ?
Is there any other motion in the sequence ?
Offline or Online ?
If you develop in .NET you can use the Aforge.NET framework.
http://www.aforgenet.com/
I was a regular visitor of the forums and I seem to remember there are plenty of people using it for tracking people.
I've also used the framework for other non-related purposes and can say I highly recommend it for its ease of use and powerful features.

Algorithm for measuring the Euclidean distance between pixels in an image

I have a number of images where I know the focal length, pixel count, dimensions and position (from GPS). They are all in a high oblique manner, taken on the ground with commercially available cameras.
alt text http://desmond.yfrog.com/Himg411/scaled.php?tn=0&server=411&filename=mjbm.jpg&xsize=640&ysize=640
What would be the best method for calculating the euclidean distances between certain pixels within an image? If it is indeed possible.
Assuming you're not looking for full landscape modelling but a simple approximation then this shouldn't be too hard. Basically a first approximation of your image reduces to a camera with know focal length looking along a plane. So we can create a model of the system in 3D very easily - it's not too far from the classic observer looking over a checkerboard demo.
Normally our graphics problem would be to project the 3D model into 2D so we could render the image. Although most programs nowadays use an API (such as OpenGL) to do this the equations are not particularly complex or difficult to understand. I wrote my first code using the examples from 3D Graphics In Pascal which is a nice clear treatise, but there will be lots of other similar source (although probably less nowadays as a hardware API is invariably used).
What's useful about this is that the projection equations are commutative, in that if you have a point on the image and the model you can run the data back though the projection to retrieve the original 3D coordinates - which is what you wish to do.
So a couple of approaches suggest: either write the code to do the above yourself directly, or probably more simply use OpenGL (I'd recommend the GLUT toolkit for this). If your math is good and manipulating matrices causes you no issue then I'd recommend the former as the solution will be tighter and it's interesting stuff - otherwise take the OpenGL approach. You'd probably want to turn the camera/plane approximation into camera/sphere fairly early too.
If this isn't sufficient for your needs then in theory going to actual landscape modelling would be feasible. The SRTM data is freely available (albeit not in the friendliest of forms) so combined with your GPS position it should be possible to create a mesh model in with which you apply the same algorithms as above.

Resources