For a project I've to detect a pattern and track it in space despite rotation, noise, etc.
It's highlighted with IR light and recorded with an IR camera:
Picture: https://i.stack.imgur.com/RJuVS.png
As on this picture it will be only very simple shape and we can choose which one we're gonna use.
I need direction on how to process a recognition of these shapes please.
What I do currently is thresholding and erosion to get a cleaner shape and then a contour detection and a polygon approximation.
What should I do then? I tried hu-moments but it wasn't good at all.
Could you please give me a global approach to recognize and track such pattern in space?
Can you choose which shape to project?
if so I would recomend using few concentric circles. Then using hough transform for circles you can easily find the center of the shape even when tracking is extremly hard (large movement/low frame rate).
If you must use rectangular shape then there is a good open source which does that. It is part of a project to read street signs and auto-translate them.
Here is a link: http://code.google.com/p/signfinder/
This source is not large and it would be easy to cut out the relevant part.
It uses "good features to track" of openCV in module CornerFinder.
Hope it helped
It is possible, you need following steps: thresholding image, some morphological enhancement,
blob extraction and normalization of blob size, blobs shape analysis, comparison of analysis results with pattern that you want to track.
There is many methods for blobs shape analysis. Simple methods: geometric dimensions, area, perimeter, circularity measurement; bit quads and others (for example, William K. Pratt "Digital Image Processing", chapter 18). Complex methods: spacial moments, template matching, neural networks and others.
In any event, it is very hard to answer exactly without knowledge of pattern shapes that you want to track )
hope it helped
Related
I'm trying to detect shapes written on a whiteboard with a black/blue/red/green marker. The shapes can be circles, rectangles or triangles. The image can be found at the bottom of this post.
I'm using OpenCV as the framework for the image recognition.
My first task is to research and list the different strategies that could be used for the detection. So far I have found the following:
1) Grayscale, Blur, Canny Edge, Contour detection, and then some logic to determine if the contours detected are shapes?
2) Haar training with different features for shapes
3) SVM classification
4) Grayscale, Blur, Canny Edge, Hough transformation and some sort of color segmentation?
Are there any other strategies that I have missed? Any newer articles or tested approaches? How would you do it?
One of the test pictures: https://drive.google.com/file/d/0B6Fm7aj1SzBlZWJFZm04czlmWWc/view?usp=sharing
UPDATE:
The first strategy seems to work the best, but is far from perfect. Issues arise when boxes are not closed, or when the whiteboard has a lot of noise. Haar training does not seems very effective because of the simple shapes to detect without many specific features. I have not tried CNN yet, but it seems most appropriate to image classification, and not so much to detect shapes in a larger image (but I'm not sure)
I think that the first option should work. You can use fourier descriptors in order to classify the segmented shapes.
http://www.isy.liu.se/cvl/edu/TSBB08/lectures/DBgrkX1.pdf
Also, maybe you can find something useful here:
http://www.pyimagesearch.com/2016/02/08/opencv-shape-detection/
If you want to try a more challenging but modern approach, consider deep learning approach (I would start with CNN). There are many implementations available on the internet. Although it is probably an overkill for this specific project, it might help you in the future...
I am working on a project that aims to build a program which automatically gives a relatively accurate detection of pupil region in eye pictures. I am currently using simplecv in Python, given that Python is easier to experiment with. Since I just started, the eye pictures I am working with are fairly standardized. However, the size of iris and pupil as well as the color of iris can vary. And the position of the eye can shift a little among pictures. Here's a picture from wikipedia that is similar to the pictures I am using:
"MyStrangeIris.JPG" by Epicstessie is licensed under CC BY-SA 3.0
I have tried simple thresholding. Since different eyes have different iris colors, a fixed thresholding would not work on all pictures.
In addition, I tried simplecv's build-in sobel and canny edge detection, it's not working especially for eyes with darker iris. I also doubt that sobel or canny alone can solve the problem, given sometimes there are noises on the edge of the pupil (e.g., reflection of eyelash)
I have entry-level knowledge about image processing and machine learning. Right now, I am thinking about three possibilities:
Do a regression on the threshold value base on some variables
Make a specific mask only for edge detection for the pupil
classification on each pixel (this looks like lots of work to build the training set)
Am I on the right track? I would like to reach out to anyone with more experience on this type of problem. Any tips/suggestions are more than welcome. Thanks!
I think that for start you should put aside the machine learning. You have so much more to try in "regular" computer vision.
You need to try and describe a model for your problem. A good way to do this is to sit and think how you as a person detect iris. For example, i can think of:
It is near the center of image.
It is is Brown/green/blue circle, with distinct black center, surrounded by mostly white ellipse.
You have a skin color around the white ellipse.
It can't be too small or too large (depends on your images..)
After you build your model, try to find better ways to find these features. Hard to point on specific stuff, but you can start from: HSV color space, Correlation, Hough transform, Morphological operations..
Only after you feel you have exhausted all conventional tools, start thinking on features extraction and machine learning..
And BTW, because you are not the first person that try to detect iris, you can look at other projects for ideas.
I have written a small matlab code for image (link you have provided), function which i have used is hough transform for circle detection, which has also implemented in opencv, so porting will not create problem, i just want to know that i am on write way or not.
my result and code is as follows:
clc
clear all
close all
im = imresize(imread('irisdet.JPG'),0.5);
gray = rgb2gray(im);
Rmin = 50; Rmax = 100;
[centersDark, radiiDark] = imfindcircles(gray,[Rmin Rmax],'ObjectPolarity','dark');
figure,imshow(im,[])
viscircles(centersDark, radiiDark,'EdgeColor','b');
Input Image:
Result of Algorithm:
Thank You
Not sure about iris classification, but I've done written digit recognition from photos. I would recommend tuning up the contrast and saturation, then use a k-nearest neighbour algorithm to classify your images. Depending on your training set, you can get as high as 90% accuracy.
I think you are on the right track. Do image preprocessing to make classification easier, then train an algorithm of your choice. You would want to treat each image as one input vector though, instead of classifying each pixel!
I think you can try Active Shape Modelling or if you want a really feature rich modelling and do not care about the time it takes execute the algorithm you can try Active appearance modelling. You might want to look into these papers for better understanding:
Active Shape Models: Their Training and Application
Statistical Models of Appearance for Computer Vision - In Depth
For a project of mine, I'm required to process images differences with OpenCV. The goal is to detect an intrusion in a zone.
To be a little more clear, here are the inputs and outputs:
Inputs:
An image of reference
A second image from approximately the same point of view (can be an error margin)
Outputs:
Detection of new objects in the scene.
Bonus:
Recognition of those objects.
For me, the most difficult part of it is to take off small differences (luminosity, camera position margin error, movement of trees...)
I already read a lot about OpenCV image processing (subtraction, erosion, threshold, SIFT, SURF...) and have some good results.
What I would like is a list of steps you think is the best to have a good detection (humans, cars...), and the algorithms to do each step.
Many thanks for your help.
Track-by-Detect, human tracker:
You apply the Hog detector to detect humans.
You draw a respective rectangle as foreground area on the foreground mask.
You pass this mask to "The OpenCV Video Surveillance / Blob Tracker Facility"
You can, now, group the passing humans based on their blob.{x,y} values into public/restricted areas.
I had to deal with this problem the last year.
I suggest an adaptive background-foreground estimation algorithm which produced a foreground mask.
On top of that, you add a blob detector and tracker, and then calculate if an intersection takes place between the blobs and your intrusion area.
Opencv comes has samples of all of these within the legacy code. Ofcourse, if you want you can also use your own or other versions of these.
Links:
http://opencv.willowgarage.com/wiki/VideoSurveillance
http://experienceopencv.blogspot.gr/2011/03/blob-tracking-video-surveillance-demo.html
I would definitely start with a running average background subtraction if the camera is static. Then you can use findContours() to find the intruding object's location and size. If you want to detect humans that are walking around in a scene, I would recommend looking at using the built-in haar classifier:
http://docs.opencv.org/doc/tutorials/objdetect/cascade_classifier/cascade_classifier.html#cascade-classifier
where you would just replace the xml with the upperbody classifier.
how to recognise a zebra crossing from top view using opencv?
in my previous question the problem is to find the curved zebra crossing using opencv.
now I thought that the following way would be much easier way to detect it,
(i) canny it
(ii) find the contours in it
(iii) find the black stripes in it, in my case it is slightly oval in shape
now my question is how to find that slightly oval shape??
look here for images of the crossing: www.shaastra.org/2013/media/events/70/Tab/422/Modern_Warfare_ps_v1.pdf
Generally speaking, I believe there are two approaches you can consider.
One approach is the more brute force image analysis approach, as you described. Here you are applying heuristics based on your knowledge of the problem in order to identify the pixels involved in the parts of the path. Note that 'brute force' here is not a bad thing, just an adjective.
An alternative approach is to apply pattern recognition techniques to find the regions of the image which have high probability of being part of the path. Here you would be transforming your image into (hopefully) meaningful features: lines, points, gradient (eg: Histogram of Oriented Gradients (HOG)), relative intensity (eg: Haar-like features) etc. and using machine learning techniques to figure out how these features describe the, say, the road vs the tunnel (in your example).
As you are asking about the former, I'm going to focus on that here. If you'd like to know more about the latter have a look around the Internet, StackOverflow, or post specific questions you have.
So, for the 'brute force image analysis' approach, your first step would probably be to preprocess the image as you need;
Consider color normalization if you are going to analyze color later, this will help make your algorithm robust to lighting differences in your garage vs the event studio. It'll also improve robustness to camera collaboration differences, though the organization hosting the competition provide specs for the camera they will use (don't ignore this bit of info).
Consider blurring the image to reduce noise if you're less interested in pixel by pixel values (eg edges) and more interested in larger structures (eg gradients).
Consider sharpening the image for the opposite reasons of blurring.
Do a bit of research on image preprocessing. It's definitely an explored topic but hardly 'solved' (whatever that would mean). There are lots of things to try at this stage and, of course, crap in => crap out.
After that you'll want to generate some 'features'..
As you mentioned, edges seem like an appropriate feature space for this problem. Don't forget that there are many other great edge detection algorithms out there other than Canny (see Prewitt, Sobel, etc.) After applying the edge detection algorithm, though, you still just have pixel data. To get to features you'll want probably want to extract lines from the edges. This is where the Hough transform space will come in handy.
(Also, as an idea, you can think about colorspace in concert with the edge detectors. By that, I mean, edge detectors usually work in the B&W colorspace, but rather than converting your image to grayscale you could convert it to an appropriate colorspace and just use a single channel. For example, if the game board is red and the lines on the crosswalk are blue, convert the image to HSV and grab the hue channel as input for the edge detector. You'll likely get better contrast between the regions than just grayscale. For bright vs. dull use the value channel, for yellow vs. blue use the Opponent colorspace, etc.)
You can also look at points. Algorithms such as the Harris corner detector or the Laplacian of Gaussian (LOG) will extract 'key points' (with a different definition for each algorithm but generally reproducible).
There are many other feature spaces to explore, don't stop here.
Now, this is where the brute force part comes in..
The first thing that comes to mind is parallel lines. Even in a curve, the edges of the lines are 'roughly' parallel. You could easily develop an algorithm to find the track in your game by finding lines which are each roughly parallel to their neighbors. Note that line detectors like the Hough transform are usually applied such that they find 'peaks', or overrepresented angles in the dataset. Thus, if you generate a Hough transform for the whole image, you'll be hard pressed to find any of the lines you want. Instead, you'll probably want to use a sliding window to examine each area individually.
Specifically speaking to the curved areas, you can use the Hough transform to detect circles and elipses quite easily. You could apply a heuristic like: two concentric semi-circles with a given difference in radius (~250 in your problem) would indicate a road.
If you're using points/corners you can try to come up with an algorithm to connect the corners of one line to the next. You can put a limit on the distance and degree in rotation from one corner to the next that will permit rounded turns but prohibit impossible paths. This could elucidate the edges of the road while being robust to turns.
You can probably start to see now why these hard coded algorithms start off simple but become tedious to tweak and often don't have great results. Furthermore, they tend to rigid and inapplicable to other, even similar, problems.
All that said.. you're talking about solving a problem that doesn't have an out of the box solution. Thinking about the solution is half the fun, and half the challenge. Everything I've described here is basic image analysis, computer vision, and problem solving. Start reading some papers on these topics and the ideas will come quickly. Good luck in the competition.
I am looking for an efficient way to detect the small boxes around the numbers (see images)?
I already tried to use hough transformation with no success. Any ideas? I need some hints! I am using opencv...
For inspiration, you can have a look at the
Matlab video sudoku solver demo and explanation
Sudoku Grab, an Iphone App, whose author explains the computer vision part on his blog
Alternatively, if you are always hunting for the same grid you could deploy something like this:
Make a perfect artificial template of the grid and detect or save all coordinates from all corners.
In the target image, do the same thing, for example with Harris points. Be creative, you might also be able to use the distinct triangles that can be found in your images.
Using the coordinates from the template and the found harris points, determine the affine transformation x = Ax' between the template and the target image. That transformation can then be used to map the template grid onto the target image. At the very least this will give you some prior information to help guide further segmentation.
The gist of the idea and examples of the estimation of affine matrix A can be found on the site of Zissermans book Multiple View Geometry in Computer Vision and Peter Kovesi
I'd start by trying to detect the rectangular boundary of the overall sheet, then applying a perspective transform to make it truly rectangular. Crop that portion of the image out. If possible, then try to make the alternating white and grey sub-rectangles have an equal background brightness - maybe try adaptive histogram equalization.
Then the Hough transform might perform better. Alternatively, you could then take an approach that's broadly similar to this demonstration by Robert Bemis on MATLAB Central (it's analysing a DNA microarray image rather than Lotto cards, but it's essentially finding bounding boxes of items arranged in a grid). At a high level, the approach is to calculate the autocorrelation along columns and rows of pixels to detect the periodicity of the items in the grid, and use that to impose a bounding box on each item.
Sorry the above advice is mostly MATLAB-based; I'm afraid I'm not an opencv user, but hopefully it will give you some ideas at least.