OpenCV + photogrammetry - opencv

i have a stereopair,
photo 1: http://savepic.org/1671682.jpg
photo 2: http://savepic.org/1667586.jpg
there is coordinate system in each image. How can I find coordinates of point A in this system using OpenCV library. It would be nice to see sample code.
I've looked for it at opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html but haven't found (or haven't understood :) )

Your 'stereo' images are fine. What you have already done is solve the correspondence problem: in both images you have indicated points 'A'. This means that you know which pixel corresponds to eachother labeling point 'A'.
What you want to do, is triangulate where your camera is. You can only do this by first calibrating your camera. This is inside of OpenCV already.
http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
This gives you the exact vector/ray of light for each vector, and the optical center of your cameras through which the ray passes. Moreover, you need stereo calibration. This establishes the orientation and position of each camera with respect through each other.
From that point on, your triangulation is simple, knowing the pixel location in both images of point 'A'. You have
Location and orientation of camera 1 and camera 2
Otical Ray Vector (pixel location) from the cameras to label 'A'.
So you have 2 locations in space, and 2 rays from these location. The intersection of these rays is your 3D answer.
Note that in practice there rays will never exactly intersect (2 lines in 3D rarely do), so you need to approximate. Use opencv function triangulatePoints(), using the input of the stereo calibration and the pixel index relating to label A.

Firstly of all this is not truly a stereo pair. A nice stereo pair needs to have 60%-80% overlap usually small rotation differences between images. Even if this pair had the necessary BASE to be a good stereo pair due to the extremely kappa rotation the resulting epipolar image would be useless.
Secondly among others you should take a look at the camera calibration and collinearity equations both supported by OpenCV
http://en.wikipedia.org/wiki/Camera_resectioning
http://en.wikipedia.org/wiki/Collinearity_equation

You need to understand the maths.
If the page isn't enough then you should look at the opencv book - it devotes a couple of chapters to this. Then there are a lot of textbooks that cover it in more detail

Related

Reconstruct 3D points from two images, given camera movement

I am trying to reconstruct the real-world coordinates of 3D points from two images taken from the same camera. The camera is not calibrated, but the movement (translation and rotation) is known. In short:
Requirement:
No calibration
Extra constraints other than image point correspondences:
Known camera translation and rotation
Same camera used in all views
I understand that, from image point correspondences alone, a scene can be reconstructed only up to a projective transformation. With more constraints, an affine or similarity reconstruction may be done. In my case, I need a similarity reconstruction.
Given the above constraints, is a similarity reconstruction possible? If possible, how should I go about doing it?
I have tried to attack the problem from a few angles. Since I am not mathematically fluent, I try to use opencv as much as possible.
findFundamentalMat() from the two images, hopefully extract the two camera matrices somehow, then triangulatePoints(). As you could have guessed, I got stuck in the middle, unable to obtain camera matrices from fundamental matrix.
The textbook "Multiple View Geometry in Computer Vision" (by Hartley and Zisserman) gives an expression (p.256, Result 9.14) that expresses the camera matrices in terms of fundamental matrix and one of the epipoles. However, without knowing the camera's intrinsic parameters (requirement: no calibration), I don't see how I can get the epipole.
I also try to treat my problem as a stereo system and use opencv's stereo*** functions. But they all seem to require human intervention to calibrate, which violates my requirement.
So, that's why I ask the question here today. The key is still, given those extra constraints, is a similarity reconstruction possible? I am not smart enough to understand the wealth of knowledge out there, and not able to come up with my own solution. Any help is appreciated.

How to determine distance of objects from camera using Epipolar Plane Image?

I am working on converting 2d images to 3d environment. The images were collected from a video made in a lateral motion. Then the images were placed one behind the other, so it would be easy to find the correspondences between the two images. This is called a spatial-temporal volume.
Next I take a slice from the spatiotemporal volume. That slice is called the Epipolar Plane Image.
Using the Epipolar Plane Image, I want to calculate the depth of the objects in the scene and make a 3D enviornment. I have listed the reference but I have not been able to figure out the math described in the paper. Can someone help me figure this out? Any help is appreciated.
Reference
Epipolar-Plane Image Analysis: An Approach to Determining Structure from Motion* !
The math in this situation is easy and straight forward.
First let's define two the coordinate systems for two overlapping images taken by the same camera with the focal length with the following schema:
Let us say that first camera position is defined as follows:
While it's orientation by using three Euler angles is:
By using this definition the corresponding rotation matrix is the identity matrix
The second camera position can be defined as follows:
And since the orientation is the same as the first camera, all Euler angles remain zero:
Which also means that the corresponding rotation matrix is the identity matrix.
If the images overlap and the orientation is the same, the situation in the image space looks like this:
Here the image coordinates and their measurement accuracy are defined as follows:
This geometrical situation can be described by using the Intercept Theorem:
As you see it's not complicated. But be aware that this solution is certainly not the best, since it's base assumption that all orientation angles are the same can't be fulfilled in reality.
If you need to be accurate then you have to perform an bundle adjustment. However, this equations are often used to determine the approximated solution for this geometric situation, where the values are used to linearize the collinearity equations.

Getting 3D coordinates with two known correlating points in OpenCV

I am tracking a moving vehicle with a stereo camera system. In both images I use background segmentation to get only the moving parts in the pictures, then put a rectangle around the biggest object.
Now I want to get the 3D coordinates of the center of the rectangle. The identified centers in the two 2D pictures are almost correlating points (I know not exactly). I did a stereo calibration with MATLAB, so I have the intrinsic parameters of both cameras and the extrinsic parameters of the stereo system.
OpenCV doesn't provide any function for doing this as far as I know and to be honest reading Zisserman didn't really help me, but maybe I am just blind to the obvious.
This should work:
1. For both camera's, compute a ray from your camera origin through the rectangle's center.
2. Convert the rays to world coordinates.
3. Compute the intersection between the two rays (or the closest point, in case they do not exactly intersect)

Correspondence between a set of 3D model points and their image projections

I have a set of 3-d points and some images with the projections of these points. I also have the focal length of the camera and the principal point of the images with the projections (resulting from previously done camera calibration).
Is there any way to, given these parameters, find the automatic correspondence between the 3-d points and the image projections? I've looked through some OpenCV documentation but I didn't find anything suitable until now. I'm looking for a method that does the automatic labelling of the projections and thus the correspondence between them and the 3-d points.
The question is not very clear, but I think you mean to say that you have the intrinsic calibration of the camera, but not its location and attitude with respect to the scene (the "extrinsic" part of the calibration).
This problem does not have a unique solution for a general 3d point cloud if all you have is one image: just notice that the image does not change if you move the 3d points anywhere along the rays projecting them into the camera.
If have one or more images, you know everything about the 3D cloud of points (e.g. the points belong to an object of known shape and size, and are at known locations upon it), and you have matched them to their images, then it is a standard "camera resectioning" problem: you just solve for the camera extrinsic parameters that make the 3D points project onto their images.
If you have multiple images and you know that the scene is static while the camera is moving, and you can match "enough" 3d points to their images in each camera position, you can solve for the camera poses up to scale. You may want to start from David Nister's and/or Henrik Stewenius's papers on solvers for calibrated cameras, and then look into "bundle adjustment".
If you really want to learn about this (vast) subject, Zisserman and Hartley's book is as good as any. For code, look into libmv, vxl, and the ceres bundle adjuster.

How to compute the rotation and translation between 2 cameras?

I am aware of the chessboard camera calibration technique, and have implemented it.
If I have 2 cameras viewing the same scene, and I calibrate both simultaneously with the chessboard technique, can I compute the rotation matrix and translation vector between them? How?
If you have the 3D camera coordinates of the corresponding points, you can compute the optimal rotation matrix and translation vector by Rigid Body Transformation
If You are using OpenCV already then why don't you use cv::stereoCalibrate.
It returns the rotation and translation matrices. The only thing you have to do is to make sure that the calibration chessboard is seen by both of the cameras.
The exact way is shown in .cpp samples provided with OpenCV library( I have 2.2 version and samples were installed by default in /usr/local/share/opencv/samples).
The code example is called stereo_calib.cpp. Although it's not explained clearly what they are doing there (for that You might want to look to "Learning OpenCV"), it's something You can base on.
If I understood you correctly, you have two calibrated cameras observing a common scene, and you wish to recover their spatial arrangement. This is possible (provided you find enough image correspondences) but only up to an unknown factor on translation scale. That is, we can recover rotation (3 degrees of freedom, DOF) and only the direction of the translation (2 DOF). This is because we have no way to tell whether the projected scene is big and the cameras are far, or the scene is small and cameras are near. In the literature, the 5 DOF arrangement is termed relative pose or relative orientation (Google is your friend).
If your measurements are accurate and in general position, 6 point correspondences may be enough for recovering a unique solution. A relatively recent algorithm does exactly that.
Nister, D., "An efficient solution to the five-point relative pose problem," Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.26, no.6, pp.756,770, June 2004
doi: 10.1109/TPAMI.2004.17
Update:
Use a structure from motion/bundle adjustment package like Bundler to solve simultaneously for the 3D location of the scene and relative camera parameters.
Any such package requires several inputs:
camera calibrations that you have.
2D pixel locations of points of interest in cameras (use a interest point detection like Harris, DoG (first part of SIFT)).
Correspondences between points of interest from each camera (use a descriptor like SIFT, SURF, SSD, etc. to do the matching).
Note that the solution is up to a certain scale ambiguity. You'll thus need to supply a distance measurement either between the cameras or between a pair of objects in the scene.
Original answer (applies primarily to uncalibrated cameras as the comments kindly point out):
This camera calibration toolbox from Caltech contains the ability to solve and visualize both the intrinsics (lens parameters, etc.) and extrinsics (how the camera positions when each photo is taken). The latter is what you're interested in.
The Hartley and Zisserman blue book is also a great reference. In particular, you may want to look at the chapter on epipolar lines and fundamental matrix which is free online at the link.

Resources