I'm trying to get frequency from iPhone / iPod music library for a spectrum app on iPod library, helping myself with reading-audio-samples-via-avassetreader to get audio samples and then with using-the-apple-fft-and-accelerate-framework and Apple vDSP Samples, but somehow I'm wrong somewhere and unable to calculate the frequency.
So step by step:
read audio sample
Hanning window
calculate fft
Is this the correct way to get frequencies from an iPod mp3 library?
Here is my code:
static COMPLEX_SPLIT A;
static FFTSetup setupReal;
static uint32_t log2n, n, nOver2;
static int32_t stride;
static float *obtainedReal;
static float scale;
+ (void)initialize
{
log2n = 10;
n = 1 << log2n;
stride = 1;
nOver2 = n / 2;
A.realp = (float *) malloc(nOver2 * sizeof(float));
A.imagp = (float *) malloc(nOver2 * sizeof(float));
obtainedReal = (float *) malloc(n * sizeof(float));
setupReal = vDSP_create_fftsetup(log2n, FFT_RADIX2);
}
- (float) performAcceleratedFastFourierTransForAudioBuffer:(AudioBufferList)ioData
{
NSUInteger * sampleIn = (NSUInteger *)ioData.mBuffers[0].mData;
for (int i = 0; i < nOver2; i++) {
double multiplier = 0.5 * (1 - cos(2*M_PI*i/nOver2-1));
A.realp[i] = multiplier * sampleIn[i];
A.imagp[i] = 0;
}
memset(ioData.mBuffers[0].mData, 0, ioData.mBuffers[0].mDataByteSize);
vDSP_fft_zrip(setupReal, &A, stride, log2n, FFT_FORWARD);
vDSP_zvmags(&A, 1, A.realp, 1, nOver2);
scale = (float) 1.0 / (2 * n);
vDSP_vsmul(A.realp, 1, &scale, A.realp, 1, nOver2);
vDSP_vsmul(A.imagp, 1, &scale, A.imagp, 1, nOver2);
vDSP_ztoc(&A, 1, (COMPLEX *)obtainedReal, 2, nOver2);
int peakIndex = 0;
for (size_t i=1; i < nOver2-1; ++i) {
if ((obtainedReal[i] > obtainedReal[i-1]) && (obtainedReal[i] > obtainedReal[i+1]))
{
peakIndex = i;
break;
}
}
//here I don't know how to calculate frequency with my data
float frequency = obtainedReal[peakIndex-1] / 44100 / n;
vDSP_destroy_fftsetup(setupReal);
free(obtainedReal);
free(A.realp);
free(A.imagp);
return frequency;
}
I got 1.485757 and 1.332233 as my first frequencies
It looks to me like there is a problem in the conversion to complex input for the FFT. vDSP_ctoz() splits a buffer where real and imaginary components are interleaved into two buffers, one real and one imaginary. Your input to that function appears to be just real data that has been casted to COMPLEX. This means that your input buffer to vDSP_ctoz() is only half as long as it needs to be and some garbage data beyond the buffer size is getting converted.
You either need to create sampleOut to be 2*n in length and set every other value (the real parts) or better yet, you can bypass the vDSP_ctoz() and directly copy your input data into A.realp and set A.imagp to zeros. vDSP_ctoz() should only be needed when interfacing to a source that produces interleaved complex data.
Edit
Ok, I think I was wrong on my first suggestion since the vDSP documentation says that the real input of the real-to-complex in-place fft should be formatted into the split complex format such that imagp contains even samples and realp contains the odd samples. I have not actually used the vDSP library, but I am familiar with a lot of other FFT libraries and I missed that detail.
You should be able to find the peaks using A.realp after the call to vDSP_zvmags(&A, 1, A.realp, 1, nOver2); At that point, A.realp should contain the magnitude squared of the FFT output, which is scalar. If you are going to do the scaling, it should be done before the mag2 operation, but it may not be needed if you are just looking for the peaks.
To get the real frequencies represented by the FFT output, use this formula:
F = (i * Fs) / N, i=0,1,...,N/2
where
i is the index of the FFT output buffer
Fs is the audio sampling rate
N is the FFT length
so your calculation might look like this:
float frequency = (peakIndex * 44100) / n;
Keep in mind that vDSP only returns the first half of the input spectrum for real input since the second half is redundant. So the FFT output represents frequencies from 0 to Fs/2.
One other note is that I don't know if your peak finding algorithm will work very well since FFT output will not be smooth and there will often be a lot of oscillation. You are simply taking the first sample where the two adjacent samples are lower. If you just want to find a single peak, it would be better just to find the max magnitude across the entire output. If you want to find multiple peaks, you will have to do something more sophisticated.
Related
I want to measure the similarity degree between two grayscale same sized images using mean square error. I can't use any framework which is not a part of macOS SDK(e.g. OpenCV, Eigen). Simple realization of this algorithm without vectorization looks like this:
vImage_Buffer imgA;
vImage_Buffer imgB;
NSUInteger mse = 0;
unsigned char *pxlsA = (unsigned char *)imgA.data;
unsigned char *pxlsB = (unsigned char *)imgB.data;
for (size_t i = 0; i < imgA.height * imgA.width; ++i) {
NSUInteger d = pxlsA[i] - pxlsB[i]);
mse += d * d;
}
Is there some way to do this without loop, in more vectorized way? Maybe something like:
mse = ((imgA - imgB) ^ 2).sum();
The answer to this question is stored in vDSP library, which is part of macOS SDK.
https://developer.apple.com/documentation/accelerate/vdsp
vDSP - Perform basic arithmetic operations and common digital signal processing routines on large vectors.
In my situation I have not really big vectors, but still.
Firstly, you need to convert unsigned char * to float *, and btw it is a significant moment, I don't know how to do this not in loop. Then you need two vDSP function: vDSP_vsbsbm and vDSP_sve.
vDSP_vsbsm - Multiplies the difference of two single-precision vectors by a second difference of two single-precision vectors.
vDSP_sve - Calculates the sum of values in a single-precision vector.
So the final code looks like that:
float *fpxlsA = (float *)malloc(imgA.height * imgA.width * sizeof(float));
float *fpxlsB = (float *)malloc(imgB.height * imgB.width * sizeof(float));
float *output = (float *)malloc(imgB.height * imgB.width * sizeof(float));
for (size_t i = 0; i < imgA.height * imgA.width; ++i) {
fpxlsA[i] = (float)(pxlsA[i]);
fpxlsB[i] = (float)(pxlsB[i]);
}
vDSP_vsbsbm(fpxlsA, 1, fpxlsB, 1, fpxlsA, 1, fpxlsB, 1, output, 1, imgA.height * imgB.width);
float sum;
vDSP_sve(output, 1, &sum, imgA.height * imgB.width);
free(output);
free(fpxlsA);
free(fpxlsB);
So, this code did exactly what I wanted and in a more vectorized form. But the result isn't good enough. Comparing performances of the loop approach and vDSP approach, vDSP is two times faster if there isn't any additional memory allocation. But in reality, where additional memory allocation takes place, loop approach is slightly faster.
This appears to be part of Mac OS: https://developer.apple.com/documentation/accelerate
Nice and fast using pointer arithmetic way to loop that would be as follows ...
int d;
size_t i = imgA.height * imgA.width;
while ( i -- )
{
d = ( int )(*pxlsA++) - ( int )(*pxlsB++);
mse += d * d;
}
EDIT
Ooops since those are unsigned char's and since we calculate the difference we need to use signed integers to do so.
And another edit - must use pxls... here, don't know what img... is.
I am attempting to implement a Fast Fourier Transform with associated complex magnitude function on the STM32F411RE Nucleo developer board. My goal is to separate a combined signal with multiple sinusoidal elements into their separate frequency components, with correct amplitude.
My issues is that I cannot correctly line up the frequency bins outcomes from the Complex magnitude function with the frequencies. I am also starting to question the validity of these outcomes as such.
I have tried to use a number of different implementations posted by people for the FFT algorithm with the magnitude fix, most notably the examples listed on StackoverFlow by SleuthEye and Blog by LB9MG.
AFAIK I have a similar approach, but somehow their approaches yield the desired results and mine do not. Below is my code that I have altered to work via the implementation that SleuthEye has created.
int main(void)
{
fftLen = 32; // can be 32, 64, 128, 256, 512, 1024, 2048, 4096
half_fftLen = fftLen/2;
volatile float32_t sampleFreq = 50 * fftLen; // Fs = binsize * fft length, desired binsize = 50 hz
arm_rfft_fast_instance_f32 inst;
arm_status status;
status = arm_rfft_fast_init_f32(&inst, fftLen);
float32_t signalCombined[fftLen] = {0};
float32_t fftCombined[fftLen] = {0};
float32_t fftMagnitude[fftLen] = {0};
volatile float32_t fftFreq[fftLen] = {0};
float32_t maxAmp;
uint32_t maxAmpInd;
while (1)
{
for (int i = 0; i< fftLen; i++)
{
signalCombined[i] = 40 * arm_sin_f32(450 * i); // 450 frequency at 40 amplitude
}
arm_rfft_fast_f32(&inst, signalCombined, fftCombined, 0); // perhaps switch to complex transform to allow for negative frequencies?
arm_cmplx_mag_f32(fftCombined, fftMagnitude, half_fftLen);
fftMagnitude[0] = fftCombined[0];
fftMagnitude[half_fftLen] = fftCombined[1];
arm_max_f32(fftMagnitude, half_fftLen, &maxAmp, &maxAmpInd); // We need the 3 max values
for (int k = 0; k < fftLen ; k++)
{
fftFreq[k] = ((k*sampleFreq)/fftLen);
}
}
Shown below are the results that I get out of the code listed above: whilst I do get a magnitude out of the algorithms (at the correct index 12), it does not correspond to the frequency or the amplitude of the input array signalCombined[].
Does anyone have an idea of why this is happening? Like so many of my errors it is probably a really trivial and stupid thing, but I cannot figure out for the life of me why this is happening.
EDIT: thanks to SleuthEye's help finding the frequencies is now possible, as the initial approach for generating the sin() signal was done incorrectly.
Some new issues popped up as the FFT only appears to yield the correct frequencies for the 32 samples, despite the bin size scaling accordingly to accommodate the adjusted sample size.
I am also unable to implement the amplitude fixing algorith: as per SleuthEye's Link with the example code 2*(1/N)*abs(X(k))^2 I have made my own implementation 2 * powf(fabs(fftMagnitude[j]), 2) / fftLen as shown in the code below, but this does not yield results that are even close to correct.
while (1)
{
for (int i = 0; i < fftLen; i++)
{
signalCombined[i] = 400 * arm_sin_f32(2 * PI * 450 * i / sampleFreq); // Sin Alpha, 400 amp at 10 kHz
// 700 * arm_sin_f32(2 * PI * 33000 * i / sampleFreq) + // Sin Bravo, 700 amp at 33 kHz
// 300 * arm_sin_f32(2 * PI * 50000 * i / sampleFreq); // Sin Charlie, 300 amp at 50 kHz
}
arm_rfft_fast_f32(&inst, signalCombined, fftCombined, 0); // calculate the fourier transform of the time domain signal
arm_cmplx_mag_f32(fftCombined, fftMagnitude, half_fftLen); // calculate the magnitude of the fourier transform
fftMagnitude[0] = fftCombined[0];
fftMagnitude[half_fftLen] = fftCombined[1];
for (int j = 0; j < sizeof(fftMagnitude); j++)
{
fftMagnitude[j] = 2 * powf(fabs(fftMagnitude[j]), 2) / fftLen; // Algorithm to fix the amplitude of each unique frequency
}
arm_max_f32(fftMagnitude, half_fftLen, &maxAmp, &maxAmpInd); // We need the 3 max values
for (int k = 0; k < fftLen ; k++)
{
fftFreq[k] = ((k*sampleFreq)/fftLen);
}
}
Your tone generation does not take into account the sampling frequency of 1600Hz, so you are effectively generating a tone at a frequency of 450*1600/(2*PI) ~ 114591Hz which gets aliased to ~608Hz. That 608Hz frequency roughly corresponds to a frequency index around 12 when using an FFT size of 32.
The generation of a 450Hz tone at a 1600Hz sampling frequency should be done as follows:
for (int i = 0; i< fftLen; i++)
{
signalCombined[i] = 40 * arm_sin_f32(2 * PI * 450 * i / sampleFreq);
}
As far as matching the amplitude, keep in kind that there is a scaling factor between the time-domain and frequency-domain of approximately 0.5*fftLen (see this other post of mine).
I am using this GitHub project called "The Amazing Audio Engine", to capture audio from the microphone. So I am using this method:
id<AEAudioReceiver> receiver = [AEBlockAudioReceiver audioReceiverWithBlock: ^(void *source, const AudioTimeStamp *time, UInt32 frames, AudioBufferList *audio) {
// Do something with 'audio'
}];
This method fires every 23 ms delivering an audio array containing all amplitudes of the sound wave over that 23 ms interval.
This is the catch. This audio sound I am dealing with is a FM signal, composed of two frequencies, one at 1000 Hz and one at twice the frequency that represents zeros and ones of a digital stream.
This is my problem. At that point I have an array of audio amplitudes over 0.23 ms.
So I thought I could do a FFT to convert the signal into frequency levels. I used this code:
// Setup the length
vDSP_Length log2n = log2f(numFrames);
// Calculate the weights array. This is a one-off operation.
FFTSetup fftSetup = vDSP_create_fftsetup(log2n, FFT_RADIX2);
// For an FFT, numSamples must be a power of 2, i.e. is always even
int nOver2 = numFrames/2;
// Populate *window with the values for a hamming window function
float *window = (float *)malloc(sizeof(float) * numFrames);
vDSP_hamm_window(window, numFrames, 0);
// Window the samples
vDSP_vmul(data, 1, window, 1, data, 1, numFrames);
// Define complex buffer
COMPLEX_SPLIT A;
A.realp = (float *) malloc(nOver2*sizeof(float));
A.imagp = (float *) malloc(nOver2*sizeof(float));
// Pack samples:
// C(re) -> A[n], C(im) -> A[n+1]
vDSP_ctoz((COMPLEX*)data, 2, &A, 1, numFrames/2);
// RUN THE FFT
//Perform a forward FFT using fftSetup and A
//Results are returned in A
vDSP_fft_zrip(fftSetup, &A, 1, log2n, FFT_FORWARD);
Because each interval is 172 Hz and I want to isolate 1000Hz, I think the 6th "bucket" of the FFT result would be the one, so I have this code:
//Convert COMPLEX_SPLIT A result to magnitudes
float amp[numFrames];
amp[0] = A.realp[0]/(numFrames*2);
for(int i=1; i<numFrames; i++) {
amp[i]=A.realp[i]*A.realp[i]+A.imagp[i]*A.imagp[i];
}
// I need the 6th and the 12th bucket, so I need a[5] and a[11]
but then I am starting to think that the FFT is not what I want because a[5] and a[11] will give me the amplitudes of ~1000Hz and ~2000Hz over 0.23 ms but in fact what I need are all the variations of the 1000 Hz and 2000 Hz sounds had over the 0.23ms time. In fact I need to obtain arrays, not single values.
In broad lines what should I do to obtain the amplitudes over time of the two frequencies, 1000 and 2000 Hz?
If you know what time resolution you want, two Goertzel filters slid by that length would allow you to measure the amplitudes of your two frequencies with much less overhead than using FFTs. The length of the filter or FFT need not (usually should not) be the same length as the number of frames from each audio callback. You can use a circular buffer or fifo to decouple the lengths. (In iOS, the numFrames can be different on different device models, and may suddenly change depending on other factors outside the apps control).
I'm fairly new to signal processing, so please bear with me. I'm trying to implement a bandpass filter to apply to an audio recording obtained from an iPad. The recording has been converted to a Float32 pointer using ExtFile functions and AudioBufferList. The sampling rate is 44100Hz. The recording is about 9 seconds long (that's about 396900 samples) and contains a 2-6kHz chirp and some ambient noise. I need to bandpass filter the recording around the frequency range 2-6kHz in order to find at what point in time the chirp occurs. I have referred to the following resources to create a bandpass filter:
https://github.com/bartolsthoorn/NVDSP/blob/master/NVDSP.mm
https://github.com/bartolsthoorn/NVDSP/blob/master/Filters/NVBandpassFilter.m
My question is, can I simply pass in the array of float values for the recording to the bandpass filter above? I have tried this, but I'm not sure if it's working, since it seems to simply decrease the value of every single value in the array. What should I expect to see after passing the recording th
However, I've seen some resources say that I first need to convert the values from time-domain to frequency-domain using a FFT. I've tried the following code to do this using some vDSP functions:
- (Float32 *)calculateFFT
{
// Acquired from http://batmobile.blogs.ilrt.org/fourier-transforms-on-an-iphone/
int numSamples = _recordingLength; //~9 seconds * 44100Hz ~= 396900 samples
// Setup the length
vDSP_Length log2n = log2f(numSamples);
// Calculate the weights array. This is a one-off operation.
FFTSetup fftSetup = vDSP_create_fftsetup(log2n, FFT_RADIX2);
// For an FFT, numSamples must be a power of 2, i.e. is always even
int nOver2 = numSamples/2;
// Populate *window with the values for a hamming window function
float *window = (float *)malloc(sizeof(float) * numSamples);
vDSP_hamm_window(window, numSamples, 0);
// Window the samples
vDSP_vmul(_recordingSamples, 1, window, 1, _recordingSamples, 1, numSamples);
// Define complex buffer
COMPLEX_SPLIT A;
A.realp = (float *) malloc(nOver2*sizeof(float));
A.imagp = (float *) malloc(nOver2*sizeof(float));
// Pack samples:
// C(re) -> A[n], C(im) -> A[n+1]
vDSP_ctoz((COMPLEX*)_recordingSamples, 2, &A, 1, numSamples/2);
//Perform a forward FFT using fftSetup and A
//Results are returned in A
vDSP_fft_zrip(fftSetup, &A, 1, log2n, FFT_FORWARD);
//Convert COMPLEX_SPLIT A result to magnitudes
Float32 *amp = new Float32[numSamples];
amp[0] = A.realp[0]/(numSamples*2);
for(int i=1; i<numSamples; i++) {
amp[i]=A.realp[i]*A.realp[i]+A.imagp[i]*A.imagp[i];
//printf("%f ",amp[i]);
}
return amp;
}
But I don't understand what is being returned from this function. If I do need to apply a FFT before passing the recording to the filter, what needs to be returned from the calculateFFT function and then passed to the filter?
Thanks in advance.
I am trying to port an existing FFT based low-pass filter to iOS using the Accelerate vDSP framework.
It seems like the FFT works as expected for about the first 1/4 of the sample. But then after that the results seem wrong, and even more odd are mirrored (with the last half of the signal mirroring most of the first half).
You can see the results from a test application below. First is plotted the original sampled data, then an example of the expected filtered results (filtering out signal higher than 15Hz), then finally the results of my current FFT code (note that the desired results and example FFT result are at a different scale than the original data):
The actual code for my low-pass filter is as follows:
double *lowpassFilterVector(double *accell, uint32_t sampleCount, double lowPassFreq, double sampleRate )
{
double stride = 1;
int ln = log2f(sampleCount);
int n = 1 << ln;
// So that we get an FFT of the whole data set, we pad out the array to the next highest power of 2.
int fullPadN = n * 2;
double *padAccell = malloc(sizeof(double) * fullPadN);
memset(padAccell, 0, sizeof(double) * fullPadN);
memcpy(padAccell, accell, sizeof(double) * sampleCount);
ln = log2f(fullPadN);
n = 1 << ln;
int nOver2 = n/2;
DSPDoubleSplitComplex A;
A.realp = (double *)malloc(sizeof(double) * nOver2);
A.imagp = (double *)malloc(sizeof(double) * nOver2);
// This can be reused, just including it here for simplicity.
FFTSetupD setupReal = vDSP_create_fftsetupD(ln, FFT_RADIX2);
vDSP_ctozD((DSPDoubleComplex*)padAccell,2,&A,1,nOver2);
// Use the FFT to get frequency counts
vDSP_fft_zripD(setupReal, &A, stride, ln, FFT_FORWARD);
const double factor = 0.5f;
vDSP_vsmulD(A.realp, 1, &factor, A.realp, 1, nOver2);
vDSP_vsmulD(A.imagp, 1, &factor, A.imagp, 1, nOver2);
A.realp[nOver2] = A.imagp[0];
A.imagp[0] = 0.0f;
A.imagp[nOver2] = 0.0f;
// Set frequencies above target to 0.
// This tells us which bin the frequencies over the minimum desired correspond to
NSInteger binLocation = (lowPassFreq * n) / sampleRate;
// We add 2 because bin 0 holds special FFT meta data, so bins really start at "1" - and we want to filter out anything OVER the target frequency
for ( NSInteger i = binLocation+2; i < nOver2; i++ )
{
A.realp[i] = 0;
}
// Clear out all imaginary parts
bzero(A.imagp, (nOver2) * sizeof(double));
//A.imagp[0] = A.realp[nOver2];
// Now shift back all of the values
vDSP_fft_zripD(setupReal, &A, stride, ln, FFT_INVERSE);
double *filteredAccell = (double *)malloc(sizeof(double) * fullPadN);
// Converts complex vector back into 2D array
vDSP_ztocD(&A, stride, (DSPDoubleComplex*)filteredAccell, 2, nOver2);
// Have to scale results to account for Apple's FFT library algorithm, see:
// http://developer.apple.com/library/ios/#documentation/Performance/Conceptual/vDSP_Programming_Guide/UsingFourierTransforms/UsingFourierTransforms.html#//apple_ref/doc/uid/TP40005147-CH202-15952
double scale = (float)1.0f / fullPadN;//(2.0f * (float)n);
vDSP_vsmulD(filteredAccell, 1, &scale, filteredAccell, 1, fullPadN);
// Tracks results of conversion
printf("\nInput & output:\n");
for (int k = 0; k < sampleCount; k++)
{
printf("%3d\t%6.2f\t%6.2f\t%6.2f\n", k, accell[k], padAccell[k], filteredAccell[k]);
}
// Acceleration data will be replaced in-place.
return filteredAccell;
}
In the original code the library was handling non power-of-two sizes of input data; in my Accelerate code I am padding out the input to the nearest power of two. In the case of the sample test below the original sample data is 1000 samples so it's padded to 1024. I don't think that would affect results but I include that for the sake of possible differences.
If you want to experiment with a solution, you can download the sample project that generates the graphs here (in the FFTTest folder):
FFT Example Project code
Thanks for any insight, I've not worked with FFT's before so I feel like I am missing something critical.
If you want a strictly real (not complex) result, then the data before the IFFT must be conjugate symmetric. If you don't want the result to be mirror symmetric, then don't zero the imaginary component before the IFFT. Merely zeroing bins before the IFFT creates a filter with a huge amount of ripple in the passband.
The Accelerate framework also supports more FFT lengths than just powers of 2.