Custom Array Functions in Open Office Calc - openoffice.org

Could someone please tell me how to write a custom function in Open Office Basic to be used in Open Office Calc and that returns an array of values. An example of one such built-in function is MINVERSE. I need to write a custom function that populates a range of cells in much the same way.
Help would be much appreciated.

Yay, I just figured it out: all you do is return an array from your macro, BUT you also have to press Ctrl+Shift+Enter when typing in the cell formula to call your function (which is also the case when working with other arrays in calc). Here's an example:
Function MakeArray
Dim ret(2,2)
ret(0,0) = 1
ret(1,0) = 2
ret(0,1) = 3
ret(1,1) = 4
MakeArray = ret
End Function

FWIW, damjan's MakeArray function returns a Variant containing an array, I think. (The type returned by MakeArray is unspecified, so it defaults to Variant. A Variant is a container with a descriptive header, apparently cast as needed by the interpreter.)
Almost, but not quite, the same thing as returning an array. According to http://www.cpearson.com/excel/passingandreturningarrays.htm, Microsoft did not introduce the ability to return an array until 2000. His example [ LoadNumbers(Low As Long, High As Long) As Long()] does not compile in OO, flagging a syntax error on the parens following Long. It appears that OO's Basic emulates the pre-2k VBA.

Related

Is there a difference between slicing and an explicit reborrow when converting Strings to &strs?

Are the following two examples equivalent?
Example 1:
let x = String::new();
let y = &x[..];
Example 2:
let x = String::new();
let y = &*x;
Is one more efficient than the other or are they basically the same?
In the case of String and Vec, they do the same thing. In general, however, they aren't quite equivalent.
First, you have to understand Deref. This trait is implemented in cases where a type is logically "wrapping" some lower-level, simpler value. For example, all of the "smart pointer" types (Box, Rc, Arc) implement Deref to give you access to their contents.
It is also implemented for String and Vec: String "derefs" to the simpler str, Vec<T> derefs to the simpler [T].
Writing *s is just manually invoking Deref::deref to turn s into its "simpler form". It is almost always written &*s, however: although the Deref::deref signature says it returns a borrowed pointer (&Target), the compiler inserts a second automatic deref. This is so that, for example, { let x = Box::new(42i32); *x } results in an i32 rather than a &i32.
So &*s is really just shorthand for Deref::deref(&s).
s[..] is syntactic sugar for s.index(RangeFull), implemented by the Index trait. This means to slice the "whole range" of the thing being indexed; for both String and Vec, this gives you a slice of the entire contents. Again, the result is technically a borrowed pointer, but Rust auto-derefs this one as well, so it's also almost always written &s[..].
So what's the difference? Hold that thought; let's talk about Deref chaining.
To take a specific example, because you can view a String as a str, it would be really helpful to have all the methods available on strs automatically available on Strings as well. Rather than inheritance, Rust does this by Deref chaining.
The way it works is that when you ask for a particular method on a value, Rust first looks at the methods defined for that specific type. Let's say it doesn't find the method you asked for; before giving up, Rust will check for a Deref implementation. If it finds one, it invokes it and then tries again.
This means that when you call s.chars() where s is a String, what's actually happening is that you're calling s.deref().chars(), because String doesn't have a method called chars, but str does (scroll up to see that String only gets this method because it implements Deref<Target=str>).
Getting back to the original question, the difference between &*s and &s[..] is in what happens when s is not just String or Vec<T>. Let's take a few examples:
s: String; &*s: &str, &s[..]: &str.
s: &String: &*s: &String, &s[..]: &str.
s: Box<String>: &*s: &String, &s[..]: &str.
s: Box<Rc<&String>>: &*s: &Rc<&String>, &s[..]: &str.
&*s only ever peels away one layer of indirection. &s[..] peels away all of them. This is because none of Box, Rc, &, etc. implement the Index trait, so Deref chaining causes the call to s.index(RangeFull) to chain through all those intermediate layers.
Which one should you use? Whichever you want. Use &*s (or &**s, or &***s) if you want to control exactly how many layers of indirection you want to strip off. Use &s[..] if you want to strip them all off and just get at the innermost representation of the value.
Or, you can do what I do and use &*s because it reads left-to-right, whereas &s[..] reads left-to-right-to-left-again and that annoys me. :)
Addendum
There's the related concept of Deref coercions.
There's also DerefMut and IndexMut which do all of the above, but for &mut instead of &.
They are completely the same for String and Vec.
The [..] syntax results in a call to Index<RangeFull>::index() and it's not just sugar for [0..collection.len()]. The latter would introduce the cost of bound checking. Gladly this is not the case in Rust so they both are equally fast.
Relevant code:
index of String
deref of String
index of Vec (just returns self which triggers the deref coercion thus executes exactly the same code as just deref)
deref of Vec

Is there a name for expressions that return what they are, instead of a reference?

I've noticed that strings, numbers, bool and nil data seem to be straight forward to work with. But when it comes to functions, tables, etc. you get a reference instead of the actual object.
Is there a name for this phenomenon? Is there terminology that describes the distinction between the way these 2 sets of types are handled?
a = "hi"
b = 1
c = true
d = nil
e = {"joe", "mike"}
f = function () end
g = coroutine.create(function () print("hi") end)
print(a) --> hi
print(b) --> 1
print(c) --> true
print(d) --> nil
print(e) --> table: 0x103350
print(f) --> function: 0x1035a0
print(g) --> thread: 0x103d30
What you're seeing here is an attempt by the compiler to return a string representation of the object. For simple object types the __tostring implementation is provided already, but for other more complex types there is no intuitive way of returning a string representation.
See Lua: give custom userdata a tostring method for more information which might help!
.Net (Microsoft Visual Basic, Visual C++ and C#) would describe them as value types and reference types, where reference types refer to a value by reference and value types hold the actual values.
I don't think lua puts too much thought into it given that it's supposed to be a simpler interpreted language and ultimately it doesn't matter as much because lua is a fairly weakly typed language (ie it doesn't enforce type safety beyond throwing an error when you try to use operations on types they can't be used on).
Either way, most programmers in my experience understand them as 'value types' and 'reference types', so I'd say they're the two terms it's best to stick with.
In Lua, numbers are values, everything else is accessible by reference only. But the different behavior on print is just because there's no way to actually print functions (and while tables could have a default behavior for print, they don't - possibly because they're allowed to have cyclic references).
What you are seeing is the behavior of the print function. It will its arguments by using tostring on them. print could be implemented by using io.write like this (simplified a bit):
function print(...)
local args = {n = select('#',...), ...}
for i=1,args.n do
io.write(tostring(args[i]), '\t')
end
io.write('\n')
end
You should notice the call to tostring. By default it returns the representation of numbers, booleans and strings. Since there is no sane default way to convert other types to a string, it only displays the type and a useless internal pointer to the object (so that you can differentiate instances). You can view the source here.
You will be surprised, but there is no value/reference distinction in Lua. :-)
Please read here and here.

How can Scala understand function calls in different formats?

I realize the following function calls are all same, but I do not understand why.
val list = List(List(1), List(2, 3), List(4, 5, 6))
list.map(_.length) // res0 = List(1,2,3) result of 1st call
list map(_.length) // res1 = List(1,2,3) result of 2nd call
list map (_.length) // res2 = List(1,2,3) result of 3rd call
I can understand 1st call, which is just a regular function call because map is a member function of class List
But I can not understand 2nd and 3rd call. For example, in the 3rd call, how can Scala compiler know "(_.length)" is parameter of "map"? How can compiler know "map" is a member function of "list"?
The only difference between variant 2 and 3 is the blank in front of the parenthesis? This can only be a delimiter - list a and lista is of course different, but a opening parens is a new token, and you can put a blank or two or three in front - or none. I don't see how you can expect a difference here.
In Java, there is no difference between
System.out.println ("foo");
// and
System.out.println("foo");
too.
This is the operator notation. The reason it works is the same reason why 2 + 2 works.
The space is used to distinguish between words -- listmap(_.length) would make the compiler look for listmap. But if you write list++list, it will work too, as will list ++ list.
So, one you are using operator notation, the space is necessary to separate words, but otherwise may be present or not.

Variable number of function arguments Lua 5.1

In my Lua script I'm trying to create a function with a variable number of arguments. As far as I know it should work like below, but somehow I get an error with Lua 5.1 on the TI-NSpire (global arg is nil). What am I doing wrong? Thanks!
function equation:init(...)
self.equation = arg[1]
self.answers = {}
self.pipe = {arg[1]}
self.selected = 1
-- Loop arguments to add answers.
for i = 2, #arg do
table.insert(self.answers, arg[i])
end
end
instance = equation({"x^2+8=12", -4, 4})
Luis's answer is right, if terser than a beginner to the language might hope for. I'll try to elaborate on it a bit, hopefully without creating additional confusion.
Your question is in the context of Lua embedded in a specific model of TI calculator. So there will be details that differ from standalone Lua, but mostly those details will relate to what libraries and functions are made available in your environment. It is unusual (although since Lua is open source, possible) for embedded versions of Lua to differ significantly from the standalone Lua distributed by its authors. (The Lua Binaries is a repository of binaries for many platforms. Lua for Windows is a batteries-included complete distribution for Windows.)
Your sample code has a confounding factor the detail that it needs to interface with a class system provided by the calculator framework. That detail mostly appears as an absence of connection between your equation object and the equation:init() function being called. Since there are techniques that can glue that up, it is just a distraction.
Your question as I understand it boils down to a confusion about how variadic functions (functions with a variable number of arguments) are declared and implemented in Lua. From your comment on Luis's answer, you have been reading the online edition of Programming in Lua (aka PiL). You cited section 5.2. PiL is a good source for background on the language. Unfortunately, variadic functions are one of the features that has been in flux. The edition of the book on line is correct as of Lua version 5.0, but the TI calculator is probably running Lua 5.1.4.
In Lua 5, a variadic function is declared with a parameter list that ends with the symbol ... which stands for the rest of the arguments. In Lua 5.0, the call was implemented with a "magic" local variable named arg which contained a table containing the arguments matching the .... This required that every variadic function create a table when called, which is a source of unnecessary overhead and pressure on the garbage collector. So in Lua 5.1, the implementation was changed: the ... can be used directly in the called function as an alias to the matching arguments, but no table is actually created. Instead, if the count of arguments is needed, you write select("#",...), and if the value of the nth argument is desired you write select(n,...).
A confounding factor in your example comes back to the class system. You want to declare the function equation:init(...). Since this declaration uses the colon syntax, it is equivalent to writing equation.init(self,...). So, when called eventually via the class framework's use of the __call metamethod, the real first argument is named self and the zero or more actual arguments will match the ....
As noted by Amr's comment below, the expression select(n,...) actually returns all the values from the nth argument on, which is particularly useful in this case for constructing self.answers, but also leads to a possible bug in the initialization of self.pipe.
Here is my revised approximation of what you are trying to achieve in your definition of equation:init(), but do note that I don't have one of the TI calculators at hand and this is untested:
function equation:init(...)
self.equation = select(1, ...)
self.pipe = { (select(1,...)) }
self.selected = 1
self.answers = { select(2,...) }
end
In the revised version shown above I have written {(select(1,...))} to create a table containing exactly one element which is the first argument, and {select(2,...)} to create a table containing all the remaining arguments. While there is a limit to the number of values that can be inserted into a table in that way, that limit is related to the number of return values of a function or the number of parameters that can be passed to a function and so cannot be exceeded by the reference to .... Note that this might not be the case in general, and writing { unpack(t) } can result in not copying all of the array part of t.
A slightly less efficient way to write the function would be to write a loop over the passed arguments, which is the version in my original answer. That would look like the following:
function equation:init(...)
self.equation = select(1, ...)
self.pipe = {(select(1,...))}
self.selected = 1
-- Loop arguments to add answers.
local t = {}
for i = 2, select("#",...) do
t[#t+1] = select(i,...)
end
self.answers = t
end
Try
function equation:init(...)
local arg={...}
--- original code here
end

matlab indexing into nameless matrix [duplicate]

For example, if I want to read the middle value from magic(5), I can do so like this:
M = magic(5);
value = M(3,3);
to get value == 13. I'd like to be able to do something like one of these:
value = magic(5)(3,3);
value = (magic(5))(3,3);
to dispense with the intermediate variable. However, MATLAB complains about Unbalanced or unexpected parenthesis or bracket on the first parenthesis before the 3.
Is it possible to read values from an array/matrix without first assigning it to a variable?
It actually is possible to do what you want, but you have to use the functional form of the indexing operator. When you perform an indexing operation using (), you are actually making a call to the subsref function. So, even though you can't do this:
value = magic(5)(3, 3);
You can do this:
value = subsref(magic(5), struct('type', '()', 'subs', {{3, 3}}));
Ugly, but possible. ;)
In general, you just have to change the indexing step to a function call so you don't have two sets of parentheses immediately following one another. Another way to do this would be to define your own anonymous function to do the subscripted indexing. For example:
subindex = #(A, r, c) A(r, c); % An anonymous function for 2-D indexing
value = subindex(magic(5), 3, 3); % Use the function to index the matrix
However, when all is said and done the temporary local variable solution is much more readable, and definitely what I would suggest.
There was just good blog post on Loren on the Art of Matlab a couple days ago with a couple gems that might help. In particular, using helper functions like:
paren = #(x, varargin) x(varargin{:});
curly = #(x, varargin) x{varargin{:}};
where paren() can be used like
paren(magic(5), 3, 3);
would return
ans = 16
I would also surmise that this will be faster than gnovice's answer, but I haven't checked (Use the profiler!!!). That being said, you also have to include these function definitions somewhere. I personally have made them independent functions in my path, because they are super useful.
These functions and others are now available in the Functional Programming Constructs add-on which is available through the MATLAB Add-On Explorer or on the File Exchange.
How do you feel about using undocumented features:
>> builtin('_paren', magic(5), 3, 3) %# M(3,3)
ans =
13
or for cell arrays:
>> builtin('_brace', num2cell(magic(5)), 3, 3) %# C{3,3}
ans =
13
Just like magic :)
UPDATE:
Bad news, the above hack doesn't work anymore in R2015b! That's fine, it was undocumented functionality and we cannot rely on it as a supported feature :)
For those wondering where to find this type of thing, look in the folder fullfile(matlabroot,'bin','registry'). There's a bunch of XML files there that list all kinds of goodies. Be warned that calling some of these functions directly can easily crash your MATLAB session.
At least in MATLAB 2013a you can use getfield like:
a=rand(5);
getfield(a,{1,2}) % etc
to get the element at (1,2)
unfortunately syntax like magic(5)(3,3) is not supported by matlab. you need to use temporary intermediate variables. you can free up the memory after use, e.g.
tmp = magic(3);
myVar = tmp(3,3);
clear tmp
Note that if you compare running times with the standard way (asign the result and then access entries), they are exactly the same.
subs=#(M,i,j) M(i,j);
>> for nit=1:10;tic;subs(magic(100),1:10,1:10);tlap(nit)=toc;end;mean(tlap)
ans =
0.0103
>> for nit=1:10,tic;M=magic(100); M(1:10,1:10);tlap(nit)=toc;end;mean(tlap)
ans =
0.0101
To my opinion, the bottom line is : MATLAB does not have pointers, you have to live with it.
It could be more simple if you make a new function:
function [ element ] = getElem( matrix, index1, index2 )
element = matrix(index1, index2);
end
and then use it:
value = getElem(magic(5), 3, 3);
Your initial notation is the most concise way to do this:
M = magic(5); %create
value = M(3,3); % extract useful data
clear M; %free memory
If you are doing this in a loop you can just reassign M every time and ignore the clear statement as well.
To complement Amro's answer, you can use feval instead of builtin. There is no difference, really, unless you try to overload the operator function:
BUILTIN(...) is the same as FEVAL(...) except that it will call the
original built-in version of the function even if an overloaded one
exists (for this to work, you must never overload
BUILTIN).
>> feval('_paren', magic(5), 3, 3) % M(3,3)
ans =
13
>> feval('_brace', num2cell(magic(5)), 3, 3) % C{3,3}
ans =
13
What's interesting is that feval seems to be just a tiny bit quicker than builtin (by ~3.5%), at least in Matlab 2013b, which is weird given that feval needs to check if the function is overloaded, unlike builtin:
>> tic; for i=1:1e6, feval('_paren', magic(5), 3, 3); end; toc;
Elapsed time is 49.904117 seconds.
>> tic; for i=1:1e6, builtin('_paren', magic(5), 3, 3); end; toc;
Elapsed time is 51.485339 seconds.

Resources