how to solve storage question for apache httpd cluster? - storage

I'm planning to set up an Apache HTTPD cluster for failover and loadbalancing. I have a typical LAMP stack and MySQL is already clustered on different servers. As I do not use sessions, I don't have to care about PHP session management, but I have to keep the file synchronized between the (active) HTTPDs. All server are dedicated servers at a webhoster.
What is the best practice to keep the files synchronized?
NFS? What if server1 and server2 write at the same time?
How to handle the heavy I/O accesses without creating a bottleneck?
Best Regards from Berlin/Germany

Have a look at RedHat GFS. As a note, it's supported on distros other than RedHat.

Related

Docker based Web Hosting

I am posting this question due to lack of experience and I need professional suggestions. The questions in SO are mainly on how to deploy or host multiple websites using Docker running on a single Web Host. This can be done, but is it ideal for moderate traffic websites.
I deploy Docker based Containers in my local machine for development. A software container has a copy of the primary application, as well all dependencies — libraries, languages, frameworks, and everything else.
It becomes easy for me to simply migrate the “docker-compose.yml” or “dockerfile” into any remote Web Server. All the softwares and dependencies get installed and will run just like my local machine.
(Say) I have a VPS and I want to host multiple websites using Docker. The only thing that I need to configure is the Port, so that the domains can be mapped to port 80. For this I have to use an extra NGINX for routing.
But VPS can be used to host multiple websites without the need of Containerisation. So, is there any special benefit of running Docker in Web Servers like AWS, Google, Hostgator, etc., OR Is Docker best or idle for development only in local machine and not to be deployed in Web Servers for Hosting.
The main benefits of docker for simple web hosting are imo the following:
isolation each website/service might have different dependency requirements (one might require php 5, another php 7 and another nodejs).
separation of concerns if you split your setup into multiple containers you can easily upgrade or replace one part of it. (just consider a setup with 2 websites, which need a postgres database each. If each website has its own db container you won't have any issue bumping the postgres version of one of the websites, without affecting the other.)
reproducibility you can build the docker image once, test it on acceptance, promote the exact same image to staging and later to production. also you'll be able to have the same environment locally as on your server
environment and settings each of your services might depend on a different environment (for example smtp settings or a database connection). With containers you can easily supply each container it's specific environment variables.
security one can argue about this one as containers itself won't do much for you in terms of security. However due to easier dependency upgrades, seperated networking etc. most people will end up with a setup which is more secure. (just think about the db containers again here, these can share a network with your app/website container and there is no need to expose the port locally.)
Note that you should be careful with dockers port mapping. It uses the iptables and will override the settings of most firewalls (like ufw) per default. There is a repo with information on how to avoid this here: https://github.com/chaifeng/ufw-docker
Also there are quite a few projects which automate the routing of requests to the applications (in this case containers) very enjoyable and easy. They usually integrate a proper way to do ssl termination as well. I would strongly recommend looking into traefik if you setup a webserver with multiple containers which should all be accessible at port 80 and 443.

How to deploy docker containers on permise

I work for a company where we are developing a web application of about 20 microservices between FE and BE. The company wants to deploy the containers in its local infrastucture based on wmvare. Knowing that we expect to have maximum 40/50 connected users at the same time, how do you suggest to deploy the containers? In which enviroment? We checked to use the container functionalities of wmvare but to do that we should change same network configuration of all the active vm in production and the person in charge is not confident in doing that.
security-wise it is good to have your server on separate virtual machine. In this case you retain snapshot and migration functionality as long with host isolation;
Inside guest virtual machine you can use Docker containers. It allows you to deploy and maintain your application with relatively small effort. As platform I'd use Ubuntu server or RHEL. On Ubuntu it is better to use latest docker repository, so it will have containerd management daemon.
It is hard to give more accurate instructions without knowledge of network topology, but maybe you consider routing so you do not need to change your network configuration.

How to connect and encrypt traffic between dockers runnning on different servers?

I currently have six docker containers that were triggered by a docker-compose file. Now I wish to move some of them to a remote machine and enable remote communication between them.
The problem now is that I also need to add a layer of security by encrypting their traffic.
This should be for a production website and needs to be very stable so I am unsure about which protocols/approaches could be better for this scenario.
I have used port forwarding using ssh and know that could also apply some stability through autossh. But I am unsure if there are other approaches that could help achieve the same idea by also taking into account stability and performance.
What protocols/approaches could help on this aim? How do they differ?
I would not recommend manually configuring docker container connections across physical servers because docker already contains a solution for that called Docker Swarm. Follow this documentation to configure your containers to use a docker swarm. I've done it and it's very cool!

Does it makes sense to manage Docker containers of a/few single hosts with Kubernetes?

I'm using docker on a bare metal server. I'm pretty happy with docker-compose to configure and setup applications.
Still some features are missing, like configuration management and monitoring maybe there are other solutions to solve this issues but I'm a bit overwhelmed by the feature set of Kubernetes and can't judge if it would help me here.
I'm also open for recommendations to solve the requirements separately:
Configuration / Secret management
Monitoring of my docker hostes applications (e.g. having some kind of dashboard)
Remot container control (SSH is okay with only one Server)
Being ready to scale my environment (based on multiple different Dockerized applications) to more than one server in future - already thinking about networking/service discovery issues with a pure docker-compose setup
I'm sure Kubernetes covers some of these features, but I have the feeling that it's too much focused on Cloud platforms where Machines are created on the fly (since I only have at most few bare metal Servers)
I hope the questions scope is not too broad, else please use the comment section and help me to narrow down the question.
Thanks.
I think the Kubernetes is absolutely much your requests and it is what you need.
Let's start one by one.
I have the feeling that it's too much focused on Cloud platforms where Machines are created on the fly (since I only have at most few bare metal Servers)
No, it is not focused on Clouds. Kubernates can be installed almost on any bare-metal platform (include ARM) and have many tools and instructions which can help you to do it. Also, it is easy to deploy it on your local PC using Minikube, which will prepare local cluster for you within VMs or right in your OS (only for Linux).
Configuration / Secret management
Kubernates has a powerful configuration and management based on special objects which can be attached to your containers. You can read more about configuration management in that article.
Moreover, some tools like Helm can provide you more automation and range of preconfigured applications, which you can install using a single command. And you can prepare your own charts for it.
Monitoring of my docker hostes applications (e.g. having some kind of dashboard)
Kubernetes has its own dashboard where you can get many kinds of information: current applications status, configuration, statistics and many more. Also, Kubernetes has great integration with Heapster which can be used with Grafana for powerful visualization of almost anything.
Remot container control (SSH is okay with only one Server)
Kubernetes controlling tool kubectl can get logs and connect to containers in the cluster without any problems. As an example, to connect a container "myapp" you just need to call kubectl exec -it myapp sh, and you will get sh session in the container. Also, you can connect to any application inside your cluster using kubectl proxy command, which will forward a port you need to your PC.
Being ready to scale my environment (based on multiple different Dockerized applications) to more than one server in future - already thinking about networking/service discovery issues with a pure docker-compose setup
Kubernetes can be scaled up to thousands of nodes. Or can have only one. It is your choice. Independent of a cluster size, you will get production-grade networking, service discovery and load balancing.
So, do not afraid, just try to use it locally with Minikube. It will make many of operation tasks more simple, not more complex.

Advantages of dockerizing Java Springboot application?

We are working with a dockerized kafka environment. I would like to know the best practices for deployments of kafka-connectors and kafka-streams applications in such scenerio . Currently we are deploying each connector and stream as springboot applications and are started as systemctl microservices . I do not find a significant advantage in dockerizing each kafka connector and stream . Please provide me insights on the same
To me the Docker vs non-Docker thing comes down to "what does your operations team or organization support?"
Dockerized applications have an advantage in that they all look / act the same: you docker run a Java app the same way as you docker run a Ruby app. Where as with an approach of running programs with systemd, there's not usually a common abstraction layer around "how do I run this thing?"
Dockerized applications may also abstract some small operational details, like port management for example - ie making sure all your app's management.ports don't clash with each other. An application in a Docker container will run as one port inside the container, and you can expose that port as some other number outside. (either random, or one to your choosing).
Depending on the infrastructure support, a normal Docker scheduler may auto-scale a service when that service reaches some capacity. However, in Kafka streams applications the concurrency is limited by the number of partitions in the Kafka topics, so scaling up will just mean some consumers in your consumer groups go idle (if there's more than the number of partitions).
But it also adds complications: if you use RocksDB as your local store, you'll likely want to persist that outside the (disposable, and maybe read only!) container. So you'll need to figure out how to do volume persistence, operationally / organizationally. With plain ol' Jars with Systemd... well you always have the hard drive, and if the server crashes either it will restart (physical machine) or hopefully it will be restored by some instance block storage thing.
By this I mean to say: that kstream apps are not stateless, web apps where auto-scaling will always give you some more power, and that serves HTTP traffic. The people making these decisions at an organization or operations level may not fully know this. Then again, hey if everyone writes Docker stuff then the organization / operations team "just" have some Docker scheduler clusters (like a Kubernetes cluster, or Amazon ECS cluster) to manage, and don't have to manage VMs as directly anymore.
Dockerizing + clustering with kubernetes provide many benefits like auto healing, auto horizontal scaling.
Auto healing: in case spring application crashes, kubernetes will automatically run another instances and will ensure required number of containers are always up.
Auto horizontal scaling: if you get burst of messages, yo can tune spring applications to auto scale up or down using HPA that can use custom metrics also.

Resources