Sprite pixel parsing to determine Vector - image-processing

Given an image that can contain any variety of solid color images, what is the best method for parsing the image at a given point and then determining the slope (or Vector if you prefer) of that area?
Being new to XNA development, I feel there must be an established method for doing this sort of thing but I have Googled this issue for awhile now.
By way of example, I have mocked up a quick image to demonstrate what I am trying to do. The white portion of the image (where the labels are shown) would be transparent pixels. The "ground" would be a RenderTarget2D or Texture2D object that will provide the Color array of pixels.
Example

What you are looking for is the tangent, which is 90 degrees to the normal (which is more commonly used). These two terms should assist you in your searching.
This is trivial if you've got the polygon outline data. If all you have is an image, then you have to come up with a way to convert it into a polygon.
It may not be entirely suitable for your problem, but the first place I would go is the Farseer Physics Engine, which has a "texture to polygon" feature you could possibly reuse.
If you are using the terrain as some kind of "ground", you can possibly cheat a bit by looking at the adjacent column of pixels and using that to determine the ground slope at that exact point. Kind of like what Lemmings and Worms do.
If you make that determination at the boundary between each pixel, you can get gradients of rise:run between two pixels horizontally. Usually you just break it into categories: so flat (1:1), 45 degrees (2:1) or too steep (>3:1). With a more complicated algorithm, that looks outwards to more columns, you can get better resolution.

Related

How to create sprite surface like in "cham cham"

My question maybe a bit too broad but i am going for the concept. How can i create surface as they did in "Cham Cham" app
https://itunes.apple.com/il/app/cham-cham/id760567889?mt=8.
I got most of the stuff done in the app but the surface change with user touch is quite different. You can change its altitude and it grows and shrinks. How this can be done using sprite kit what is the concept behind that can anyone there explain it a bit.
Thanks
Here comes the answer from Cham Cham developers :)
Let me split the explanation into different parts:
Note: As the project started quite a while ago, it is implemented using pure OpenGL. The SpiteKit implementation might differ, but you just need to map the idea over to it.
Defining the ground
The ground is represented by a set of points, which are interpolated over using Hermite Spline. Basically, the game uses a bunch of points defining the surface, and a set of points between each control one, like the below:
The red dots are control points, and eveyrthing in between is computed used the metioned Hermite interpolation. The green points in the middle have nothing to do with it, but make the whole thing look like boobs :)
You can choose an arbitrary amount of steps to make your boobs look as smooth as possible, but this is more to do with performance.
Controlling the shape
All you need to do is to allow the user to move the control points (or some of them, like in Cham Cham; you can define which range every point could move in etc). Recomputing the interpolated values will yield you an changed shape, which remains smooth at all times (given you have picked enough intermediate points).
Texturing the thing
Again, it is up to you how would you apply the texture. In Cham Cham, we use one big texture to hold the background image and recompute the texture coordinates at every shape change. You could try a more sophisticated algorithm, like squeezing the texture or whatever you found appropriate.
As for the surface texture (the one that covers the ground – grass, ice, sand etc) – you can just use the thing called Triangle Strips, with "bottom" vertices sitting at every interpolated point of the surface and "top" vertices raised over (by offsetting them against "bottom" ones in the direction of the normal to that point).
Rendering it
The easiest way is to utilize some tesselation library, like libtess. What it will do it covert you boundary line (composed of interpolated points) into a set of triangles. It will preserve texture coordinates, so that you can just feed these triangles to the renderer.
SpriteKit note
Unfortunately, I am not really familiar with SpriteKit engine, so cannot guarantee you will be able to copy the idea over one-to-one, but please feel free to comment on the challenging aspects of the implementation and I will try to help.

Detecting multiple shapes in a picture and calculate the middle

This question can be answered with any type of programming language, cause I would like some help with algorithms, but I prefer Delphi. I have a the task to detect and count multiple shapes (between 1 and N - mostly circular or a Elipse) of random pictures and calculate their middle and return them as coordinates of a picture. The middle of each shape can have a filling (but it doesn't matter). The shapes are at least 1+ pixel away from each other. None of the shapes will like blend in with another or the corner of a picture.
The background of the picture has always the same background color, which actually doesn't matter, cause the borders/frames of the shapes are always a different color compared to the background. This makes it easy to detect the shapes. I was thinking about going pixel by pixel and collect the coordinates and then draw like an invisible rectangle/square around every shape to calculate the middle. Then I also heard about scanline, but I don't think it would be faster in this case. So my question is, how can I calculate:
How many shapes are in the picture.
How can I calculate (more or less) the exact middle of them.
A few pictures to visualize the task:
This is a picture with random shapes (mostly close circles)
As you can see they are apart from each other just fine.
Then I could easily draw/calculate an imaginary rectangle/square around every shape and calculate the middle of it like that:
After I have the rectangles/squares. I can easily calculate the middle.
How do I start?
PS.: I've drawn some circles in mspaint. I have to add that all shapes are CLOSED, which makes it possible to flood fill EVERY shape in the picture with no problems!
Thank you for your help.
Calculate MSER (Maximally stable extremal regions) for the image. I can't explain that algorithm here. You can refer to the Maximally stable extremal regions article for more information about the algorithm.
That will give you centroid too.
This algorithm is implemented as inbuilt functions in OpenCv tool and Matlab 2012b.
Another method which i can think of and possibly simple than previous method is to apply connected components algorithm and count number of objects.More information of this can be found in book by Gonzalez and Woods on Digital Image Processing.

how to find shapes that are slightly elongated oval / rectangle with curved corners / sometimes sector of a circle?

how to recognise a zebra crossing from top view using opencv?
in my previous question the problem is to find the curved zebra crossing using opencv.
now I thought that the following way would be much easier way to detect it,
(i) canny it
(ii) find the contours in it
(iii) find the black stripes in it, in my case it is slightly oval in shape
now my question is how to find that slightly oval shape??
look here for images of the crossing: www.shaastra.org/2013/media/events/70/Tab/422/Modern_Warfare_ps_v1.pdf
Generally speaking, I believe there are two approaches you can consider.
One approach is the more brute force image analysis approach, as you described. Here you are applying heuristics based on your knowledge of the problem in order to identify the pixels involved in the parts of the path. Note that 'brute force' here is not a bad thing, just an adjective.
An alternative approach is to apply pattern recognition techniques to find the regions of the image which have high probability of being part of the path. Here you would be transforming your image into (hopefully) meaningful features: lines, points, gradient (eg: Histogram of Oriented Gradients (HOG)), relative intensity (eg: Haar-like features) etc. and using machine learning techniques to figure out how these features describe the, say, the road vs the tunnel (in your example).
As you are asking about the former, I'm going to focus on that here. If you'd like to know more about the latter have a look around the Internet, StackOverflow, or post specific questions you have.
So, for the 'brute force image analysis' approach, your first step would probably be to preprocess the image as you need;
Consider color normalization if you are going to analyze color later, this will help make your algorithm robust to lighting differences in your garage vs the event studio. It'll also improve robustness to camera collaboration differences, though the organization hosting the competition provide specs for the camera they will use (don't ignore this bit of info).
Consider blurring the image to reduce noise if you're less interested in pixel by pixel values (eg edges) and more interested in larger structures (eg gradients).
Consider sharpening the image for the opposite reasons of blurring.
Do a bit of research on image preprocessing. It's definitely an explored topic but hardly 'solved' (whatever that would mean). There are lots of things to try at this stage and, of course, crap in => crap out.
After that you'll want to generate some 'features'..
As you mentioned, edges seem like an appropriate feature space for this problem. Don't forget that there are many other great edge detection algorithms out there other than Canny (see Prewitt, Sobel, etc.) After applying the edge detection algorithm, though, you still just have pixel data. To get to features you'll want probably want to extract lines from the edges. This is where the Hough transform space will come in handy.
(Also, as an idea, you can think about colorspace in concert with the edge detectors. By that, I mean, edge detectors usually work in the B&W colorspace, but rather than converting your image to grayscale you could convert it to an appropriate colorspace and just use a single channel. For example, if the game board is red and the lines on the crosswalk are blue, convert the image to HSV and grab the hue channel as input for the edge detector. You'll likely get better contrast between the regions than just grayscale. For bright vs. dull use the value channel, for yellow vs. blue use the Opponent colorspace, etc.)
You can also look at points. Algorithms such as the Harris corner detector or the Laplacian of Gaussian (LOG) will extract 'key points' (with a different definition for each algorithm but generally reproducible).
There are many other feature spaces to explore, don't stop here.
Now, this is where the brute force part comes in..
The first thing that comes to mind is parallel lines. Even in a curve, the edges of the lines are 'roughly' parallel. You could easily develop an algorithm to find the track in your game by finding lines which are each roughly parallel to their neighbors. Note that line detectors like the Hough transform are usually applied such that they find 'peaks', or overrepresented angles in the dataset. Thus, if you generate a Hough transform for the whole image, you'll be hard pressed to find any of the lines you want. Instead, you'll probably want to use a sliding window to examine each area individually.
Specifically speaking to the curved areas, you can use the Hough transform to detect circles and elipses quite easily. You could apply a heuristic like: two concentric semi-circles with a given difference in radius (~250 in your problem) would indicate a road.
If you're using points/corners you can try to come up with an algorithm to connect the corners of one line to the next. You can put a limit on the distance and degree in rotation from one corner to the next that will permit rounded turns but prohibit impossible paths. This could elucidate the edges of the road while being robust to turns.
You can probably start to see now why these hard coded algorithms start off simple but become tedious to tweak and often don't have great results. Furthermore, they tend to rigid and inapplicable to other, even similar, problems.
All that said.. you're talking about solving a problem that doesn't have an out of the box solution. Thinking about the solution is half the fun, and half the challenge. Everything I've described here is basic image analysis, computer vision, and problem solving. Start reading some papers on these topics and the ideas will come quickly. Good luck in the competition.

Get rectangle out of array of points

Using GPUImage, I am able to detect corners of a book/page in an image. But sometimes, it will pass more than 4 points, in which case I will need to process and figure out the best rectangle out of these points. Here's an example:
What's the most efficient way to figure out the best rectangle in this case?
Thanks
If you're using a corner detection algorithm, then you can filter results based on the relative strength of the detected corner. The contrast at the book corners relative to your current background appears to be much stronger than the contrast at the point found in the wood grain. Are there relative magnitudes associated with each point, or do you just get the points? Setting thresholds for edge strengths can mean a lot of fiddling unless the intensities of the foreground and background are relatively constant.
Your sample image could be blurred or morphed. For example, the right morphological "close" on light pixels could eliminate the texture in the wood grain without having an effect on the size and shape of the book. (http://en.wikipedia.org/wiki/Mathematical_morphology)
Another possibility is to shrink the image to a much smaller size and then perform detection on that. Resizing the image will tend to wipe out tiny details such as whatever wood grain pattern is currently being detected.
Picking the right lens and lighting can make the image easier to process. Try to simplify the image as much as possible before processing it. As mentioned above, "dark field" lighting that would illuminate just the book edges would present a much simpler image for processing. Writing down the constraints can make it more obvious which solution will be most robust and simplest to implement. Finding any rectangle anywhere in an image is very difficult; it's much easier to find a light rectangle on a dark background if the rectangle is at least 100 x 100 pixels in size, rotated no more than 15 degrees from square to the image edges, etc.
More involved solutions can be split into two approaches:
Solving the problem using given only 4 or more (x,y) points.
Using a different image processing technique altogether for the sample image.
1. Solving the program given only the points
If you generally only have 5 or 6 points, and if you are confident that 4 of those points will belong to the corners of the rectangles that you want, then you can try this:
Find the convex hull of all points. The convex hull is the N-gon that completely encompasses all points. If the points were pegs sticking up, and if you stretched a rubber band around them and let it snap into place, then the final shape of the rubber band is a convex hull. Algorithms that find convex hulls typically return a list of points that ordered counterclockwise from the bottom leftmost point.
Make a copy of your point list and remove points from the copy until only four points remain. These four remaining points will still be ordered counterclockwise.
Calculate the angle formed by each set of three successive points: points 1, 2, 3, then 2, 3, 4, then 3, 4, 1, and so on.
If an angle is outside a reasonable tolerance--less than 70 degrees or greater than 110 degrees--skip back to step 2 and remove the next point (or set of points).
Store the min and max angles for each set of 4 points.
Repeat steps 2 - 6, removing a different point (or points) each time.
Track the set of points for which the min and max angles are closest to 90 degrees.
http://en.wikipedia.org/wiki/Convex_hull
There are a number of other checks and constraints that could be introduced. For example, if the point-to-point distances for 3 successive points in the convex hull (pts N to N+1, and N+1 to N+2) are close to the expected width and height of the book, then you might mark these as known good points and only test the remaining points to see which is the fourth point.
The technique above can get unwieldy if you get quite a few points, but it may work if two or three of the book corner points are expected to be found on the convex hull.
For any geometric problem, I always recommend checking out GeometricTools.com, which has a lot of great, optimized source code for all sorts of problems. It's very handy to have the book as well, especially if you can find a cheap copy using AddAll.com.
http://www.geometrictools.com/
2. Other image processing techniques for your sample image
Although I could be wrong, it appears that GPUImage doesn't have many general-purpose image processing algorithms. Some other image processing algorithms could make this problem much simpler to solve.
Though there isn't space to go into it here, one of the keys to successful image processing is appropriate lighting. Make sure you're lighting is consistent. A diffuse light that evenly illuminates the book and the background would work well. You can simplify the problem using funkier lighting: if you have four lights (or a special ring light), you can provide horizontal illumination from the top, bottom, left, and right that will cause the edges of the book to appear bright and other surfaces to appear dark.
http://www.benderassoc.com/mic/lighting/nerlite/Darkfield.htm
If you can use some other GPU libraries to do image processing, then one of the following techniques could work nicely:
Connected component labeling (a.k.a. finding blobs). It shouldn't be too hard to use either binary thresholding or a watershed algorithm to separate the white blob that is the book from the rest of the background. Once the blob for the book is identified, finding the corners is easier. (http://en.wikipedia.org/wiki/Connected-component_labeling) In OpenCV you can find the "contours."
Generate an list of edge points, then have four separate line-fitting tools search from top to bottom, right to left, bottom to top, and left to right to find the four strong (and mostly straight) edges associated with the book. In your sample image, though, either the book cover is slightly warped or the camera lens has introduced barrel distortion.
Use a corner detector designed to find light corners on a dark background. If you will always be looking for a white book on a wood grain background, you can create a detector to find white corners on a brown background.
Use a Hough technique to find the four strongest lines in the image. (http://en.wikipedia.org/wiki/Hough_transform)
The algorithmic technique that works best will depend on your constraints: are you looking for rectangles only of a certain size? is the contrast between foreground and background consistent? can you introduce lighting to simplify the appearance of the image? and so on.

Shape/Pattern Matching Approach in Computer Vision

I am currently facing a, in my opinion, rather common problem which should be quite easy to solve but so far all my approached have failed so I am turning to you for help.
I think the problem is explained best with some illustrations. I have some Patterns like these two:
I also have an Image like (probably better, because the photo this one originated from was quite poorly lit) this:
(Note how the Template was scaled to kinda fit the size of the image)
The ultimate goal is a tool which determines whether the user shows a thumb up/thumbs down gesture and also some angles in between. So I want to match the patterns against the image and see which one resembles the picture the most (or to be more precise, the angle the hand is showing). I know the direction in which the thumb is showing in the pattern, so if i find the pattern which looks identical I also have the angle.
I am working with OpenCV (with Python Bindings) and already tried cvMatchTemplate and MatchShapes but so far its not really working reliably.
I can only guess why MatchTemplate failed but I think that a smaller pattern with a smaller white are fits fully into the white area of a picture thus creating the best matching factor although its obvious that they dont really look the same.
Are there some Methods hidden in OpenCV I havent found yet or is there a known algorithm for those kinds of problem I should reimplement?
Happy New Year.
A few simple techniques could work:
After binarization and segmentation, find Feret's diameter of the blob (a.k.a. the farthest distance between points, or the major axis).
Find the convex hull of the point set, flood fill it, and treat it as a connected region. Subtract the original image with the thumb. The difference will be the area between the thumb and fist, and the position of that area relative to the center of mass should give you an indication of rotation.
Use a watershed algorithm on the distances of each point to the blob edge. This can help identify the connected thin region (the thumb).
Fit the largest circle (or largest inscribed polygon) within the blob. Dilate this circle or polygon until some fraction of its edge overlaps the background. Subtract this dilated figure from the original image; only the thumb will remain.
If the size of the hand is consistent (or relatively consistent), then you could also perform N morphological erode operations until the thumb disappears, then N dilate operations to grow the fist back to its original approximate size. Subtract this fist-only blob from the original blob to get the thumb blob. Then uses the thumb blob direction (Feret's diameter) and/or center of mass relative to the fist blob center of mass to determine direction.
Techniques to find critical points (regions of strong direction change) are trickier. At the simplest, you might also use corner detectors and then check the distance from one corner to another to identify the place when the inner edge of the thumb meets the fist.
For more complex methods, look into papers about shape decomposition by authors such as Kimia, Siddiqi, and Xiaofing Mi.
MatchTemplate seems like a good fit for the problem you describe. In what way is it failing for you? If you are actually masking the thumbs-up/thumbs-down/thumbs-in-between signs as nicely as you show in your sample image then you have already done the most difficult part.
MatchTemplate does not include rotation and scaling in the search space, so you should generate more templates from your reference image at all rotations you'd like to detect, and you should scale your templates to match the general size of the found thumbs up/thumbs down signs.
[edit]
The result array for MatchTemplate contains an integer value that specifies how well the fit of template in image is at that location. If you use CV_TM_SQDIFF then the lowest value in the result array is the location of best fit, if you use CV_TM_CCORR or CV_TM_CCOEFF then it is the highest value. If your scaled and rotated template images all have the same number of white pixels then you can compare the value of best fit you find for all different template images, and the template image that has the best fit overall is the one you want to select.
There are tons of rotation/scaling independent detection functions that could conceivably help you, but normalizing your problem to work with MatchTemplate is by far the easiest.
For the more advanced stuff, check out SIFT, Haar feature based classifiers, or one of the others available in OpenCV
I think you can get excellent results if you just compute the two points that have the furthest shortest path going through white. The direction in which the thumb is pointing is just the direction of the line that joins the two points.
You can do this easily by sampling points on the white area and using Floyd-Warshall.

Resources