Rapid motion and object detection in opencv - opencv

How can we detect rapid motion and object simultaneously, let me give an example,....
suppose there is one soccer match video, and i want to detect position of each and every players with maximum accuracy.i was thinking about human detection but if we see soccer match video then there is nothing with human detection because we can consider human as objects.may be we can do this with blob detection but there are many problems with blobs like:-
1) I want to separate each and every player. so if players will collide then blob detection will not help. so there will problem to identify player separately
2) second will be problem of lights on stadium.
so is there any particular algorithm or method or library to do this..?
i've seen some research paper but not satisfied...so suggest anything related to this like any article,algorithm,library,any method, any research paper etc. and please all express your views in this.

For fast and reliable human detection, Dalal and Triggs' Histogram of Gradients is generally accepted as very good. Have you tried playing with that?
Since you mentioned rapid motion changes, are you worried about fast camera motion or fast player/ball motion?
You can do 2D or 3D video stabilization to fix camera motion (try the excellent Deshaker plugin for VirtualDub).
For fast player motion, background subtraction or other blob detection will definitely help. You can use that to get a rough kinematic estimate and use that as an estimate of your blur kernel. This can then be used to deblur the image chip containing the player.
You can do additional processing to establish identify based upon OCRing jersey numbers, etc.
You mentioned concern about lights on the stadium. Is the main issue that it will cast shadows? That can be dealt with by the HOG detector. Blob detection to get blur kernel should still work fine with the shadow.
If you have control over the camera, you may want to reduce exposure times to reduce blur. Denoising techniques can be used to reduce CCD noise that occurs with extreme low light and dense optical flow approaches align the frames and boost the signal back up to something reasonable via adding the denoised frames.

Related

Detect if there is camera motion in a video with moving objects in surgical video

I am trying to differentiate between camera motion and tool motion in a surgical video.
I have tried optical flow using opencv farneback and pass the results to an ML model to learn but no success.a major issue is getting good keypoints in case of camera motion. Is there an alternate technique to distinguish between camera motion and tool/tissue movement? Note: camera motion happens only in 10% of the video
I wish I could add a comment (too new to be able to comment), as I don't have a good answer for you.
I think it really depends on the nature of the input image. Can you show some typical input images here?
What is your optical flow result look like? I thought you might get some reasonable results.
Have you tried some motion estimation method, to analyze if there is global movement across different frames, or there is only some local movements?

Algorithms for Tracking moving objects with a moving camera

I'm trying to develop an algorithm for real time tracking moving objects with a single moving camera setup as a project, in OpenCV (C++).
My basic objectives are
Detect motion in an (initially) static frame
Track that moving object (camera to follow that object)
Here is what I have tried already
Salient motion detection using temporal differencing and Optical Flow. (does not compensate for a moving camera)
KLT based feature tracking, but I was not able to segment the moving object features (moving object features got mixed with other trackable features in the image)
Mean shift based tracking (required initialization and is a bit computationally expensive)
I'm now trying to look into the following methods
Histogram of Gradients.
Algorithms that implement camera motion parameters.
Any advice on which direction should I proceed forward to acheive my objective.
Type: 'zdenek kalal predator' to google.com and watch the videos, read the papers that came up. I think it will give you a lot of insight.

OpenCV intrusion detection

For a project of mine, I'm required to process images differences with OpenCV. The goal is to detect an intrusion in a zone.
To be a little more clear, here are the inputs and outputs:
Inputs:
An image of reference
A second image from approximately the same point of view (can be an error margin)
Outputs:
Detection of new objects in the scene.
Bonus:
Recognition of those objects.
For me, the most difficult part of it is to take off small differences (luminosity, camera position margin error, movement of trees...)
I already read a lot about OpenCV image processing (subtraction, erosion, threshold, SIFT, SURF...) and have some good results.
What I would like is a list of steps you think is the best to have a good detection (humans, cars...), and the algorithms to do each step.
Many thanks for your help.
Track-by-Detect, human tracker:
You apply the Hog detector to detect humans.
You draw a respective rectangle as foreground area on the foreground mask.
You pass this mask to "The OpenCV Video Surveillance / Blob Tracker Facility"
You can, now, group the passing humans based on their blob.{x,y} values into public/restricted areas.
I had to deal with this problem the last year.
I suggest an adaptive background-foreground estimation algorithm which produced a foreground mask.
On top of that, you add a blob detector and tracker, and then calculate if an intersection takes place between the blobs and your intrusion area.
Opencv comes has samples of all of these within the legacy code. Ofcourse, if you want you can also use your own or other versions of these.
Links:
http://opencv.willowgarage.com/wiki/VideoSurveillance
http://experienceopencv.blogspot.gr/2011/03/blob-tracking-video-surveillance-demo.html
I would definitely start with a running average background subtraction if the camera is static. Then you can use findContours() to find the intruding object's location and size. If you want to detect humans that are walking around in a scene, I would recommend looking at using the built-in haar classifier:
http://docs.opencv.org/doc/tutorials/objdetect/cascade_classifier/cascade_classifier.html#cascade-classifier
where you would just replace the xml with the upperbody classifier.

Free Face Detection Algorithm for Video

I'm working on an application which needs to detect the location of a face in a video stream, using a web cam placed at desk height (and slightly off to the side of the user).
I've already implemented a version of OpenCV (using their Haar detection) and it works ok... the problem is that it tends to lose the position of the face if the user turns their head to the side (or looks up).
Since the webcam is sitting on the desk, it is tilted up at a 30 degree angle. The OpenCV detection algorithm is trained using fully frontal images, but not up-angle images like the ones I'm using. I know OpenCV also has a profile Haar file that can be used.. but from my research it seems that the results are quite mixed on profile detection. In addition, I don't really have control over the background or lighting of the image... so this sometimes also effects the efficacy of the OpenCV detection algorithm.
So, I guess what I'm asking is... are there other face detection algorithms (that are hopefully free, as this is part of my university research) that are better for detecting faces for this type of setup? It seems like some of the built-in webcams (for Macs and PCs) actually have fairly robust algorithms for detecting faces (and then overlaying cheesy cartoon images over the faces)... but they seem to work well regardless of background or lighting. Do you have any recommendations?
Thanks.
For research purposes, you can use the Haar cascades in OpenCV, things are different if you want to go commercial (in which case you need to consider LBP cascades instead). Just be sure to quote the Viola-Jones paper in your references.
To improve the results of face detection, you have several paths:
individual image detection: you can send rotated images to a frontal cascade to account for some variability without training your own cascade
individual image detection but more work) : train your own cascade in operating conditions closer to the ones of your app
stability in video streams (as in webcams & co.) : this is achieved by adding a layer of tracking around the face detection. Depending on your knowledge about this topic, you can use your own filter, have fun with OpenCV's particle or Kalman filter, implement a simple first or second order low pass filter on the face position or a PID tracker on the detected face...
Any of these tracking filters will enhance a lot your results when processing video streams.
Use CLM-framework for accurate realtime face detection and face landmark detection.
Example of the system in action: http://youtu.be/V7rV0uy7heQ
You may find it useful.

Feature Detection in Noisy Images

I've built an imaging system with a webcam and feature matching such that as I move the camera around; I can track the camera's motion. I am doing something similar to here, except with the webcam frames as the input.
It works really well for "good" images, but when taking images in really low light lots of noise appears (camera high gain), and that messes with the feature detection and matching. Basically, it doesn't detect any good features, and when it does, it cannot match them correctly between frames.
Does anyone know a good solution for this? What other methods are used for finding and matching features?
Here are two example images with very low features:
I think phase correlation is going to be your best bet here. It is designed to tell you the phase shift (i.e., translation) between two images. It is much more resilient (but not immune) to noise than feature detection because it operates in frequency space; whereas, feature detectors operate spatially. Another benefit is, it is very fast when compared with feature detection methods. I have an implementation available in the OpenCV trunk that is sub-pixel accurate located here.
However, your images are pretty much "featureless" with the exception of the crease in the middle, so even phase correlation may have some trouble with it. Think of it like trying to detect translation in a snow storm. If all you can see is white, you can't tell that you have translated at all, thus the term whiteout. In your case, the algorithm might suffer from "greenout" :)
Can you adjust the camera settings to work better in low-light conditions. Have you fully opened the iris? Can you live with lower framerates? Setting a longer exposure time will allow the camera to gather more light, thus giving you more features at the cost of adding motion blur. Or, if low-light is your default environment you probably want something designed for this like an IR camera, but those can be expensive. Other than that, a big lens and long exposures are your friend :)
Histogram equalization may be of interest in improving the image contrast. But, sometimes it can just enhance the noise. OpenCV has a global histogram equalization function called equalizeHist. For a more localized implementation, you'll want to look at Contrast Limited Adaptive Histogram Equalization or CLAHE for short. Here is a good article on it. This page has some nice examples, and some code.

Resources