How to use MEF to init a group of classes? - dependency-injection

I use prism/mvvm/mef for my app, and loading all Views marked with ViewExport(Region) does work nicely (I'm using the StockTraderRI AutoPopulateExportedViewsBehaviour).
Now I'd like to use this runtime lookup capability to initialise some other background classes.
Say I got an interface
public interface ITable
{
}
And I got a lot of classes deriving from this interface.
Is there a way to mark those derived classes somehow and get MEF to create them on runtime and add them into some kind of list or container?
Like into a region which is not shown anywhere, I'd expect? How would I achieve this in MEF?

Sure there is!
Mark the classes inheriting your interface with Export attribute and in another class create yourself a property say of generic type ObservableCollection with attribute [ImportMany]. The should do the trick.

If you are using MEF instead Unity you can also use Container call within your bootstrapper :
var tables = Container.GetExportedValues<ITable>();
Container is the public property of your MEFBootstrapper.

Related

Dependency Injection and/vs Global Singleton

I am new to dependency injection pattern. I love the idea, but struggle to apply it to my case. I have a singleton object, let’s call it X, which I need often in many parts of my program, in many different classes, sometimes deep in the call stack. Usually I would implement this as a globally available singleton. How is this implemented within the DI pattern, specifically with .NET Core DI container? I understand I need to register X with the DI container as a singleton, but how then I get access to it? DI will instantiate classes with constructors which will take reference to X, that’s great – but I need X deep within the call hierarchy, within my own objects which .NET Core or DI container know nothing about, in objects that were created using new rather than instantiated by the DI container.
I guess my question is – how does global singleton pattern aligns/implemented by/replaced by/avoided with the DI pattern?
Well, "new is glue" (Link). That means if you have new'ed an instance, it is glued to your implementation. You cannot easily exchange it with a different implementation, for example a mock for testing. Like gluing together Lego bricks.
I you want to use proper dependency injection (using a container/framework or not) you need to structure your program in a way that you don't glue your components together, but instead inject them.
Every class is basically at hierarchy level 1 then. You need an instance of your logger? You inject it. You need an instance of a class that needs a logger? You inject it. You want to test your logging mechanism? Easy, you just inject something that conforms to your logger interface that logs into a list and the at the end of your test you can check your list and see if all the required logs are there. That is something you can automate (in contrast to using your normal logging mechanism and checking the logfiles by hand).
That means in the end, you don't really have a hierarchy, because every class you have just gets their dependencies injected and it will be the container/framework or your controlling code that determines what that means for the order of instantiation of objects.
As far as design patterns go, allow me an observation: even now, you don't need a singleton. Right now in your program, it would work if you had a plain global variable. But I guess you read that global variables are "bad". And design patterns are "good". And since you need a global variable and singleton delivers a global variable, why use the "bad", when you can use the "good" right? Well, the problem is, even with a singleton, the global variable is bad. It's a drawback of the pattern, a toad you have to swallow for the singleton logic to work. In your case, you don't need the singleton logic, but you like the taste of toads. So you created a singleton. Don't do that with design patterns. Read them very carefully and make sure you use them for the intended purpose, not because you like their side-effects or because it feels good to use a design pattern.
Just an idea and maybe I need your thought:
public static class DependencyResolver
{
public static Func<IServiceProvider> GetServiceProvider;
}
Then in Startup:
public void Configure(IApplicationBuilder app, IServiceProvider serviceProvider)
{
DependencyResolver.GetServiceProvider = () => { return serviceProvider; };
}
And now in any deed class:
DependencyResolver.GetServiceProvider().GetService<IService>();
Here's a simplified example of how this would work without a singleton.
This example assumes that your project is built in the following way:
the entry point is main
main creates an instance of class GuiCreator, then calls the method createAndRunGUI()
everything else is handled by that method
So your simplified code looks like this:
// main
// ... (boilerplate)
container = new Container();
gui = new GuiCreator(container.getDatabase(), container.getLogger(), container.getOtherDependency());
gui.createAndRunGUI();
// ... (boilerplate)
// GuiCreator
public class GuiCreator {
private IDatabase db;
private ILogger log;
private IOtherDependency other;
public GuiCreator(IDatabase newdb, ILogger newlog, IOtherDependency newother) {
db = newdb;
log = newlog;
other = newother;
}
public void createAndRunGUI() {
// do stuff
}
}
The Container class is where you actually define which implementations will be used, while the GuiCreator contructor takes interfaces as arguments. Now let's say the implementation of ILogger you choose has itself a dependency, defined by an interface its contructor takes as argument. The Container knows this and resolves it accordingly by instantiating the Logger as new LoggerImplementation(getLoggerDependency());. This goes on for the entire dependency chain.
So in essence:
All classes keep instances of interfaces they depend upon as members.
These members are set in the respective constructor.
The entire dependency chain is thus resolved when the first object is instantiated. Note that there might/should be some lazy loading involved here.
The only places where the container's methods are accessed to create instances are in main and inside the container itself:
Any class used in main receives its dependencies from main's container instance.
Any class not used in main, but rather used only as a dependency, is instantiated by the container and receives its dependencies from within there.
Any class used neither in main nor indirectly as a dependency somewhere below the classes used in main will obviously never be instantiated.
Thus, no class actually needs a reference to the container. In fact, no class needs to know there even is a container in your project. All they know is which interfaces they personally need.
The Container can either be provided by some third party library/framework or you can code it yourself. Typically, it will use some configuration file to determine which implementations are actually supposed to be used for the various interfaces. Third party containers will usually perform some sort of code analysis supported by annotations to "autowire" implementations, so if you go with a ready-made tool, make sure you read up on how that part works because it will generally make your life easier down the road.

Class extension vs. subclassing in Swift?

I'am using a third-party framework that provides a class whose instances only have properties. In my app, I'd like to add an extra property to this instances. What the appropriate way to do this would it be for this scenario?
a) Extending the framework's class in my app
b) Creating a subclass of the framework's class and define the new property I need
Thanks in advance
It's
b)
because adding (stored) properties in a class extension is not supported.
There are two important rules for using extensions:
Extensions can add new functionality to a type, but they cannot override existing functionality
Extensions can add new computed properties, but they cannot add stored properties, or add property observers to existing properties
It depends on what is the behaviour you are expecting to achieve.
Extending: You can only add new methods and computed vars, but you will achieve seamless effort in your code. the new functionality is available anywhere without adding new classes in your code
Subclassing: You can add new vars and override function but there is a bigger footprint in your code. You will need to use that specific subclass throughout your project.
I guess it is more of a design question.
My suggestion: if the entire project needs this new behaviour use extensions, otherwise subclass.

The benefits and correct usage of a DI Container

I'm having troubles getting the advantage of a IoC (DI) container like Ninject, Unity or whatever. I understand the concepts as follows:
DI: Injecting a dependency into the class that requires it (preferably via constructor injection). I totally see why the less tight coupling is a good thing.
public MyClass{
ISomeService svc;
public MyClass(ISomeService svc){
svc = svc;
}
public doSomething(){
svc.doSomething();
}
}
Service Locator: When a "container" is used directly inside the class that requires a dependancy, to resolve the dependancy. I do get the point that this generates another dependancy and I also see that basically nothing is getting injected.
public MyClass{
public MyClass(){}
public doSomething(){
ServiceLocator.resolve<ISomeService>().doSomething();
}
}
Now, what confuses me is the concept of a "DI container". To me, it looks exactly like a service locator which - as far as I read - should only be used in the entry point / startup method of an application to register and resolve the dependancies and inject them into the constructors of other classes - and not within a concrete class that needs the dependancy (probably for the same reason why Service locators are considered "bad")
What is the purpose of using the container when I could just create the dependancy and pass it to the constructor?
public void main(){
DIContainer.register<ISomeService>(new SomeService());
// ...
var myclass = new MyClass(DIContainer.resolve<ISomeService>());
myclass.doSomething();
}
Does it really make sense to pass all the dependancies to all classes in the application initialization method? There might be 100 dependancies which will be eventually needed (or not) and just because it's considered a good practice you set create them in the init method?
What is the purpose of using the container when I could just create the dependancy and pass it to the constructor?
DI containers are supposed to help you create an object graph quickly. You just tell it which concrete implementations you want to use for which abstractions (the registration phase), and then it can create any objects you want want (resolve phase).
If you create the dependencies and pass them to the constructor (in the application initialization code), then you are actually doing Pure DI.
I would argue that Pure DI is a better approach in many cases. See my article here
Does it really make sense to pass all the dependancies to all classes in the application initialization method? There might be 100 dependancies which will be eventually needed (or not) and just because it's considered a good practice you set create them in the init method?
I would say yes. You should create the object graph when your application starts up. This is called the composition root.
If you need to create objects after your application has started then you should use factories (mainly abstract factories). And such factories will be created with the other objects in the composition roots.
Your classes shouldn't do much in the constructor, this will make the cost of creating all the dependencies at the composition root low.
However, I would say that it is OK to create some types of objects using the new keyword in special cases. Like when the object is a simple Data Transfer Object (DTO)

Possible to bind an interface to a type in a specific class?

It is possible with Ninject (Most recent version) to bind an interface to a type in a specific class ? By that i mean... lets say i have two classes..
ClassA and ClassB, both have IContext injection in the constructor.. it is possible to say bind type IContext to ContextA for ClassA and IContext to ContextB to ClassB ?
Instead of using named bindings you can also use conditional bindings which requires less code and is more typesafe:
Bind<IContext>().To<ContextA>().WhenInjectedInto<SomeClassThatNeedsAContext>();
Bind<IContext>().To<ContextB>().WhenInjectedInto<SomeOtherClassThatNeedsBContext>();
One way to do this would be to use named bindings.
kernel.Bind<IContext>().To<ContextA>().Named("A");
kernel.Bind<IContext>().To<ContextB>().Named("B");
kernel.Bind<SomeClassThatNeedsContext>().ToSelf().WithConstructorArgument("context",ninjectContext=>ninjectContext.Get<IContext>("A"));
kernel.Bind<SomeOtherClassThatNeedsContext>().ToSelf().WithConstructorArgument("context",ninjectContext=>ninjectContext.Get<IContext>("B"));
Another way might be to just use the "WithConstructorArgument" by itself
kernel.Bind<SomeClassThatNeedsAContext>().ToSelf().WithConstructorArgument("context",ninjectContext=>ninjectContext.Get<ContextA>());
Just to avoid confusion, Ninject has the concept of a context as well, do not confuse that with your provided sample IContext etc.
One thing I have found from experience is that often if I find myself doing this, there is a flaw in my interface or class design somewhere. Maybe you really need two different interfaces?

How to instantiate a MEF exported object using Ninject?

My application is using MEF to export some classes from an external assembly. These classes are setup for constructor injection. The issue I am facing is that
MEF is attempting to instantiate the classes when I try to access them. Is there a way to have Ninject take care of the instantiation of the class?
IEnumerable<Lazy<IMyInterface>> controllers =
mefContainer.GetExports<IMyInterface>();
// The following line throws an error because MEF is
// trying to instantiate a class that requires 5 parameters
IMyInterface firstClass = controllers.First().Value;
Update:
There are multiple classes that implement IMyInterface and I would like to select the one that has a specific name and then have Ninject create an instance of it. I'm not really sure if I want laziness.
[Export(typeof(IMyInterface))]
public class MyClassOne : IMyInterface {
private MyRepository one;
private YourRepository two;
public MyClassTwo(MyRepository repoOne, YourRepository repoTwo) {
one = repoOne;
two = repoTwo;
}
}
[Export(typeof(IMyInterface))]
public class MyClassTwo : IMyInterface {
private MyRepository one;
private YourRepository two;
public MyClassTwo(MyRepository repoOne, YourRepository repoTwo) {
one = repoOne;
two = repoTwo;
}
}
Using MEF, I would like to get either MyClassOne or MyClassTwo and then have Ninject provide an instance of MyRepository and YourRepository (Note, these two are bound in a Ninject module in the main assembly and not the assembly they are in)
You could use the Ninject Load mechanism to get the exported classes into the mix, and the you either:
kernel.GetAll<IMyInterface>()
The creation is lazy (i.e., each impl of IMyInterface is created on the fly as you iterate over the above) IIRC, but have a look at the tests in the source (which is very clean and readable, you have no excuse :P) to be sure.
If you dont need the laziness, use LINQ's ToArray or ToList to get a IMyInterface[] or List<IMyInterface>
or you can use the low-level Resolve() family of methods (again, have a look in the tests for samples) to get the eligible services [if you wanted to do some filtering or something other than just using an instance - though binding metadata is probably the solution there]
Finally, if you can edit in an explanation of whether you need laziness per se or are doing it to illustrate a point. (and have a search for Lazy<T> here and in general wrt both Ninject and autofac for some samples - cant recall if there are any examples in the source - think not as it's still on 3.5)
EDIT: In that case, you want a bind that has:
Bind<X>().To<>().In...().Named( "x" );
in the registrations in your modules in the child assembly.
Then when you're resolving in the parent assembly, you use the Kernel.Get<> overload that takes a name parameter to indicate the one you want (no need for laziness, arrays or IEnumerable). The Named mechanism is a specific (just one or two helper extensions implement it in terms of the generalised concept) application of the binding metadata concept in Ninject - there's plenty room to customise it if somethng beyond a simple name is insufficient.
If you're using MEF to construct the objects, you could use the Kernel.Inject() mechanism to inject properties. The problem is that either MEF or Ninject
- has to find the types (Ninject: generally via Bind() in Modules or via scanning extensions, after which one can do a Resolve to subset the bindings before instantiation - though this isnt something you normally do)
- has to instantiate the types (Ninject: typically via a Kernel.Get(), but if you discovered the types via e.g. MEF, you might use the Kernel.Get(Type) overloads )
- has to inject the types (Ninject: typically via a Kernel.Inject(), or implicit in the `Kernel.Get())
What's not clear to me yet is why you feel you need to mix and mangle the two - ultimately sharing duties during construction and constructor injection is not a core use case for either lib, even if they're both quite composable libraries. Do you have a constraint, or do you have critical benefits on both sides?
You can use ExportFactory to create Instances
see docs here:
http://mef.codeplex.com/wikipage?title=PartCreator
Your case would be slitly different
I would use Metadata and a custom attribute also
[ImportMany(AllowRecomposition=true)]
IEnumerable<ExportFactory<IMyInterFace, IMyInterfaceMetaData>> Controllers{ get; set; }
public IMyInterface CreateControllerFor(string parameter)
{
var controller = Controllers.Where(v => v.Metadata.ControllerName == parameter).FirstOrDefault().CreateExport().Value;
return controller;
}
or use return Controllers.First() without the Metadata
Then you can code the ninject parts around that or even stick with MEF
Hope this helps

Resources