I'm running into a bug in my code that makes me think that I don't really understand some of the details about F# and lazy evaluation. I know that F# evaluates eagerly and therefore am somewhat perplexed by the following function:
// Open a file, then read from it. Close the file. return the data.
let getStringFromFile =
File.OpenRead("c:\\eo\\raw.txt")
|> fun s -> let r = new StreamReader(s)
let data = r.ReadToEnd
r.Close()
s.Close()
data
When I call this in FSI:
> let d = getStringFromFile();;
System.ObjectDisposedException: Cannot read from a closed TextReader.
at System.IO.__Error.ReaderClosed()
at System.IO.StreamReader.ReadToEnd()
at <StartupCode$FSI_0134>.$FSI_0134.main#()
Stopped due to error
This makes me think that getStringFromFile is being evaluated lazily--so I'm totally confused. I'm not getting something about how F# evaluates functions.
For a quick explanation of what's happening, lets start here:
let getStringFromFile =
File.OpenRead("c:\\eo\\raw.txt")
|> fun s -> let r = new StreamReader(s)
let data = r.ReadToEnd
r.Close()
s.Close()
data
You can re-write the first two lines of your function as:
let s = File.OpenRead(#"c:\eo\raw.txt")
Next, you've omitted the parentheses on this method:
let data = r.ReadToEnd
r.Close()
s.Close()
data
As a result, data has the type unit -> string. When you return this value from your function, the entire result is unit -> string. But look what happens in between assigning your variable and returning it: you closed you streams.
End result, when a user calls the function, the streams are already closed, resulting in the error you're seeing above.
And don't forget to dispose your objects by declaring use whatever = ... instead of let whatever = ....
With that in mind, here's a fix:
let getStringFromFile() =
use s = File.OpenRead(#"c:\eo\raw.txt")
use r = new StreamReader(s)
r.ReadToEnd()
You don't read from your file. You bind method ReadToEnd of your instance of StreamReader to the value data and then call it when you call getStringFromFile(). The problem is that the stream is closed at this moment.
I think you have missed the parentheses and here's the correct version:
// Open a file, then read from it. Close the file. return the data.
let getStringFromFile =
File.OpenRead("c:\\eo\\raw.txt")
|> fun s -> let r = new StreamReader(s)
let data = r.ReadToEnd()
r.Close()
s.Close()
data
Related
I want to write a parser.
It seems practical to me to have a mutable Iterator that I can pass around to different parser functions.
I've tried to illustrated a simplified approach, which compiles but is not ideal yet.
fn main() {
let tokens = vec!["fIrSt".to_string(), "SeConD".to_string(), "tHiRd".to_string(), "FoUrTh".to_string()];
let parsed = parse_input(tokens);
println!("{}", parsed);
}
fn parse_input(tokens: Vec<String>) -> String {
let mut tokens_iter = tokens.iter();
let upps = parse_upper(&mut tokens_iter);
let lowers = parse_lower(&mut tokens_iter);
upps + &lowers
}
fn parse_upper(tokens_iter: &mut Iterator<Item=&String>) -> String {
let mut result = String::new();
let token_1 = tokens_iter.next().unwrap().to_uppercase();
let token_2 = tokens_iter.next().unwrap().to_uppercase();
result.push_str(&token_1);
result.push_str(&token_2);
result
}
fn parse_lower(tokens_iter: &mut Iterator<Item=&String>) -> String {
let mut result = String::new();
let token_1 = tokens_iter.next().unwrap().to_lowercase();
let token_2 = tokens_iter.next().unwrap().to_lowercase();
result.push_str(&token_1);
result.push_str(&token_2);
result
}
How the example works:
Let's say I have some input, that has already been tokenized. Here it is represented by the tokens vector (Vec<String>).
Inside the outer parse_input function, the Vec gets transformed into an Iterator and then passed into different, specific parser functions. Here: parse_upper and parse_lower. In real life those could be "parse_if_statement" or "parse_while_loop" but which part of the Iterator gets worked on is not relevant for the question.
What is relevant is, that every call to next advances the cursor on the Iterator. So that every function consumes the pieces it needs.
This example compiles and gives the output: FIRSTSECONDthirdfourth
I would like to be able to peek() into the Iterator, before I pass it to a function. This is necessary to determine which function should actually be called. But everything I have tried with using a Peekable instead of an Iterator resulted in total lifetime and borrow chaos.
Any suggestions on how to pass a Peekable instead of an Iterator in this case?
Maybe using a Peekable as function parameter is a bad idea in the first place. Or maybe my Iterator approach is already wrong. All suggestions/hints are welcome.
I'm having a problem getting my DU working as expected. I've defined a new DU which either has a result of type <'a> or any Exception derived from System.Exception
open System
// New exceptions.
type MyException(msg : string) = inherit Exception(msg)
type MyOtherException(msg : string) = inherit MyException(msg)
// DU to store result or an exception.
type TryResult<'a, 't> =
| Result of 'a
| Error of 't :> Exception
//This is fine.
let result = Result "Test"
// This works, doing it in 2 steps
let ex = new MyOtherException("Some Error")
let result2 = Error ex
// This doesn't work. Gives "Value Restriction" error.
let result3 = Error (new MyOtherException("Some Error"))
I can't understand why it is allowing me to create an "Error" if I do it in 2 steps, but when i'm doing the same thing on a single line, I get a Value Restriction error.
What am i missing?
Thanks
UPDATE
Looking at the post by #kvb, adding type information each time I need to create an Error seemed a bit verbose, so I wrapped it up into an additional method which creates an Error and is a bit more succinct.
// New function to return a Result
let asResult res : TryResult<_,Exception> = Result res
// New function to return an Error
let asError (err : Exception) : TryResult<unit,_> = Error(err)
// This works (as before)
let myResult = Result 100
// This also is fine..
let myResult2 = asResult 100
// Using 'asError' now works and doesn't require any explicit type information here.
let myError = asError (new MyException("Some Error"))
I'm not sure if specifying an Error with 'unit' will have any consequences I haven't foreseen yet.
TryResult<unit,_> = Error(err)
Consider this slight variation:
type MyOtherException(msg : string) =
inherit MyException(msg)
do printfn "%s" msg
let ex = new MyOtherException("Some Error") // clearly, side effect occurs here
let result2 = Error ex // no side effect here, but generalized value
let intResults = [Result 1; result2]
let stringResults = [Result "one"; result2] // can use result2 at either type, since it's a generalized value
let result3 = Error (MyOtherException("Some Error")) // result would be of type TryResult<'a, MyOtherException> for any 'a
// In some other module in a different compilation unit
let intResults2 = [Result 1; result3] // why would side effect happen here? just using a generic value...
let stringResults2 = [Result "one"; result3] // likewise here...
The issue is that it looks like result3 is a value, but the .NET type system doesn't support generic values, it only supports values of concrete types. Therefore, the MyOtherException constructor needs to be called each time result3 is used; however, this would result in any side effects occurring more than once, which would be surprising. As Ringil suggests, you can work around this by telling the compiler to treat the expression as a value anyway:
[<GeneralizableValue>]
let result3<'a> : TryResult<'a,_> = Error(new MyOtherException("Some Error"))
This is fine as long as the constructor doesn't have side effects.
You can do:
let result3<'a> = Error (new MyOtherException("Some Error"))
EDIT:
As for why you can't do it in one step, first note that this results in the same error:
let result4 = Result (new MyOtherException("Some Error"))
As does this:
let result4 = Result ([|1;|])
But that this works:
let result4 = Result ([1;])
What's similar about Exception and Arrays, but not Lists? It's their mutability. The value restriction will bother you when you try to do make a TryResult with a type that is mutable in a single step.
Now as for why the two step process solves this, it's because the constructor make the whole function not generalizable because you're applying a function to the constructor. But splitting it into two steps solves that. It is similar to Case 2 here on MSDN.
You can read more about it at the above MSDN article and the why this happens in this more indepth blog post.
Reactive.Linq's GroupBy leaves you with an IObservable<IGroupedObservable<'TKey, 'TValue>>. How do you get the values from the IGroupedObservable? The key is accessible by x.Key, so I suppose the values could be projected by some transformation of sorts.
This is roughly what I want to do:
open System.Reactive.Linq
let doStuffWithEvenNumbers i = i*10
let doStuffWithOddNumbers i = i*3
let numbers = Observable.Range(0, 10)
let groups = numbers.GroupBy(fun i -> i % 2 = 0)
let subscription1 = groups.Where(fun i -> i.Key).Subscribe(doStuffWithEvenNumbers)
let subscription2 = groups.Where(fun i -> not i.Key).Subscribe(doStuffWithOddNumbers)
Of course, the two let subscriptionX = lines won't compile, since I need to get from IGroupedObservable<bool, int> to int.
IGroupedObservable<'TKey, 'TValue> extends IObservable<'TValue>, that's how you get to the values. In your case you can do that in many ways:
// you can use SelectMany to 'flatten' the observable
groups.Where(fun i -> i.Key).SelectMany(fun o -> o :> IObservable<int>).Subscribe(doStuffWithEvenNumbers)
Note that Subscribe call take an Action, whereas in your case you defined the method as a Func. You need to remove its returned value for the call to work.
I am serializing two values in to an array and I am trying to go through a WriteBuf but I am getting the error that
error: the trait `std::io::Write` is not implemented for the type `[_; 12]`
error: type `std::io::buffered::BufWriter<&mut [_; 12]>` does not implement any method in scope named `write_be_u32`
error: type `std::io::buffered::BufWriter<&mut [_; 12]>` does not implement any method in scope named `write_be_f64`
Here is the minimum code to generate this error:
use std::io::{ BufWriter, Write };
fn main(){
let packed_data = [0; 12];
let timestamp : u32 = 100;
let value : f64 = 9.9;
let writer = BufWriter::new(&mut packed_data);
writer.write_be_u32(timestamp);
writer.write_be_f64(value);
println!("Packed data looks like {:?}", packed_data);
}
Am I no borrowing the slice correctly? Am I note using the proper module to define the Write trait for my buffer?
Here is a playpen for this code: http://is.gd/ol8qND
I see a few potential problems with your code:
packed_data isn't mutable.
You use packed_data at the end of main while writer holds a mutable reference to it.
I don't think that either of those things are causing the error. I did however find something that works:
use std::io::{ BufWriter, Write };
fn main() {
let mut packed_data = [0; 12];
{
let packed_data_ref: &mut [u8] = &mut packed_data;
let mut writer = BufWriter::new(packed_data_ref);
writer.write(&[1, 2, 3, 4]).unwrap();
} // `writer` gets deallocated and releases the mutable reference
println!("Packed data looks like {:?}", packed_data);
}
[playpen]
So I guess the issue is that you need a &[u8] rather than a &[u8; 12]. I have no idea why. I hope this at least helps though.
This question already has answers here:
Call F# code from C#
(4 answers)
Closed 8 years ago.
I am SQL developer and am really new to both F# and C#. I need help on how to pass a string to f# function below and to return the result from F# to C#.
Description of project:
I am using stanford postagger to tag a sentence with the parts of speech.
Reference link from where i copied this code.
(http://sergey-tihon.github.io/Stanford.NLP.NET/StanfordPOSTagger.html)
module File1
open java.io
open java.util
open edu.stanford.nlp.ling
open edu.stanford.nlp.tagger.maxent
// Path to the folder with models
let modelsDirectry =
__SOURCE_DIRECTORY__ + #'..\stanford-postagger-2013-06-20\models\'
// Loading POS Tagger
let tagger = MaxentTagger(modelsDirectry + 'wsj-0-18-bidirectional-nodistsim.tagger')
let tagTexrFromReader (reader:Reader) =
let sentances = MaxentTagger.tokenizeText(reader).toArray()
sentances |> Seq.iter (fun sentence ->
let taggedSentence = tagger.tagSentence(sentence :?> ArrayList)
printfn "%O" (Sentence.listToString(taggedSentence, false))
)
// Text for tagging
let text = System.Console.ReadLine();
tagTexrFromReader <| new StringReader(text)
it won't matter if C# or F# - do make a function that gets a string and returns ... let
s say an int, you just need something like this (put it in some MyModule.fs):
namespace MyNamespace
module MyModule =
// this is your function with one argument (a string named input) and result of int
let myFun (input : string) : int =
// do whatever you have to
5 // the value of the last line will be your result - in this case a integer 5
call it in from C#/.net with
int result = MyNamespace.MyModule.myFun ("Hallo");
I hope this helps you out a bit
For your example this would be:
let myFun (text : string) =
use reader = new StringReader(text)
tagTexrFromReader reader
as you'll have this in the module File1 you can just call it with var res = Fiel1.myFun(text);
BTW: use is in there because StringReader is IDisposable and using use F# will dispose the object when you exit the scope.
PS: is tagTexrFromReader a typo?