Unity Container ResolutionFailedException when the mapping is correct in the config file - dependency-injection

I was using a ServiceLocator which i was DIing with Unity
public ServiceLocator(IUserStore userStore, IProdcutsStore productsStore, ...etc) {}
public IUserStore UserStore
{
get { return userStore; }
}
This all worked fine, but I wanted lazy instantiation of the repositories as they have quite sparse use.
So my ServiceLocator now looks like
public ServiceLocator(IUnityContainer container) {}
public IUserStore UserStore
{
get { return (IUserStore)container.Resolve(typeof(IUserStore)); }
}
// ...etc
I'm now getting a really unhelpful ResolutionFailedException error
Resolution of the dependency failed,
type =
"DomainModel.DataServices.Interface.IUserStore",
name = "". Exception message is: The
current build operation (build key
Build
Key[DomainModel.DataServices.Interface.IUserStore,
null]) failed: The current type,
DomainModel.DataServices.Interface.IUserStore,
is an interface and cannot be
constructed. Are you missing a type
mapping? (Strategy type
BuildPlanStrategy, index 3)
Telling me my interface type cannot be instantiated because it is an interface is pretty pointless. I know it's an interface, that's why the container is supposed to be resolving it for me!
Anyway, the point to note here is that I know the type mapping in the config is fine, as when I was injecting the type interface directly instead of trying to lazy load, it resolved it with no problems.
What am I missing that means something somewhere has to change in order to lazy load this way?
Update: I am guessing what's happening here, is that when I DI the container into the ServiceLocator, the "main" container is instantiating a new container each time which is then not configured properly. I think maybe I need some way to specify that I was to pass this in as the container, rather than resolve it with a new instantiation.

You're going in a somewhat wrong direction... At first you've had a testable class that declared its dependencies in the constructor and you turned it into non-so-testable, asking for "something" inside a container... No good =(
You should either implement some factory interface for your expensive object and require it in the constructor, or (if you can) switch to Unity 2.0 and use the Automatic Factories:
public ServiceLocator(Func<IUserStore> userStoreBuilder)
//...
public IUserStore UserStore
{
get { return userStoreBuilder(); }
}
If you want to only create the instance of that object once, you can add cahcing to that property, or with .NET 4.0 you can try asking Lazy in the constructor.
P.S. Oh, yes. And answering your particualr question =) If you still want to inject an instance of your container somewhere else, you need to first register it inside itself =)
container.RegisterInstance<IUnityContainer>(container);
Fix (see comments) DO NOT register a Unity container inside itself, this will cause StackOverflowException in container.Dispose(), the correct instance will be injected as a dependency without the registration.

Related

Some concepts in Dependency Injection

I am new to dependency injection and have been doing some reading about it, both on StackOverflow and elsewhere. In practice I am having trouble with using it correctly.
To explain the problem, here's a basic situation where I am not sure how to use DI:
Suppose I have some object that is going to be used in several different classes. However, in order for this object to be usable, it needs certain parameters that I don't have at start-up.
A conceivable way that I can see to do this using DI is to create a blank instance of this object, a method to initialize it with the necessary parameters, and a flag for whether or not it is initialized.
To me, this feels like a hack, because the object shouldn't really exist yet and I am just passing a container around, waiting for the responsible code to initialize it. Is this how it is meant to be done, or am I missing the point?
That is indeed a pretty tough thing to get one's head around when getting started with DI, and something that also isn't easily explained.
Your notion that creating a "blank" object that will be initialized later via a method might be a suboptimal solution is correct - an object should be able to do its work at any time; Initialize() methods are what Mark Seemann calls "temporal coupling" in his book Dependency Injection in .NET. This is an anti-pattern that makes the code using the object dependent on the inner workings of that object and thus breaks encapsulation.
The question is when the required information becomes available, what the "responsible code to initialize it" is, and where it gets the information from - and also how it gets access to the object to initialize it. Ideally, this initializing code would itself be injected into your object, and whenever your object's methods/properties are accessed, it requests initialization from that other dependency.
Also, what happens if the IsInitialized flag returns false? Is that still a valid program state?
In general, as an object in a dependency injected object graph, I should either know all my "configuration" data on creation, or know someone who can give it to me (that someone is another object injected as a dependency).
It might help if you could provide a bit more detail about what kind of parameters the object needs and where they need to come from.
Edit
What you're describing in your comment is pretty much exactly my first encounter with this kind of issue; there's a question somewhere here on SO that I posted back then.
The important thing is to build individual classes (usually, there may be exceptions, but what those are is a matter of experience) in such a way that you assume everything the class needs is present. When the program is running, there need to be other classes then that make sure that assumption will not fail.
Setter injection is something I generally try not to have to avoid said temporal coupling; according to Mark Seemann, setter injection should usually only be used when you already have a good default in place that you just overwrite through the setter. In this case, though, the object would not be able to function properly without that dependency.
This may not be the most elegant way to do this (I usually have the luxury to apply DI in pretty closed code-only environments without having to worry about a UI), but it would work (kind of - it compiles, but is still pseudo code):
public class MainForm
{
private readonly IDataManager _dataManager;
private readonly IConnectionProvider _connectionProvider;
private readonly IConnectionReceiver _connectionReceiver;
public MainForm(IDataManager dataManager, IConnectionProvider connectionProvider, IConnectionReceiver connectionReceiver)
{
this._dataManager = dataManager;
this._connectionProvider = connectionProvider;
this._connectionReceiver = connectionReceiver;
}
public void btnConnect_Click()
{
IConnection connection = this._connectionProvider.GetConnection();
if (null != connection)
{
this._connectionReceiver.SetConnection(connection);
this.SetFormControlsEnabled(true);
}
}
private void SetFormControlsEnabled(bool doEnable)
{
}
}
public interface IConnectionProvider
{
IConnection GetConnection();
}
public interface IConnectionReceiver
{
void SetConnection(IConnection connection);
}
public interface IConnection
{
IConnectionWebService ConnectionWebService { get; }
}
public class ConnectionBridge : IConnection, IConnectionReceiver
{
private IConnection _connection;
#region IConnectionReceiver Members
public void SetConnection(IConnection connection)
{
this._connection = connection;
}
#endregion IConnectionReceiver Members
#region IConnection Members
public IConnectionWebService ConnectionWebService
{
get { return this._connection.ConnectionWebService; }
}
#endregion
}
public interface IConnectionWebService {}
public interface IDataManager { }
public class DataManager : IDataManager
{
public DataManager(IConnection connection)
{
}
}
So, MainForm is the thing that holds it all together. It starts out with its controls disabled, because it knows they need a working IDataManager and that will (by convention) need a connection. When a "connect" button is clicked, the form asks its IConnectionProvider dependency for a connection. It does not care where that connection comes from; the connection provider might display another form to ask for credentials or maybe just read them from a file.
Then the form knows that the connection has to be passed on to the IConnectionReceiver instance, and after that all controls can be enabled. This is not by any DI principle, this is just how we have defined that MainForm works.
The data manager on the other hand has everything it needs from the start - an IConnection instance. That can't do what it's supposed to do at first, but there is other code preventing that from causing problems.
ConnectionBridge is both a decorator for the actual IConnection instance and an adapter decoupling connection acquisition from connection consumption. It does that by employing the Interface Segregation Principle.
As a note on the side, be aware that while Dependency Injection is an important technique, it is only one of several principles you should follow to write what is known as "clean code". The most well known are the SOLID principles (of which DI is one), but there are others like Command-Query-Separation (CQS), "Don't repeat yourself" (DRY) and the Law of Demeter. On top of all that, practice unit testing, precisely Test Driven Development (TDD). These things really make a tremendous difference - but if you're taking up DI of your own accord, you're already off to a good start.
I agree with what GCATNM said and i would like to add that whenever i feel there is an object like this i go and use one of the Factory pattern variants (be it an Abstract Factory, Static Factory, etc ..) and i would inject the factory with the source of the configuration information for this object. So as Marc Seemann also said and i am not quoting: Factories are a great companion of Dependency Injection and you will need them occasionally.

Why does one use dependency injection?

I'm trying to understand dependency injections (DI), and once again I failed. It just seems silly. My code is never a mess; I hardly write virtual functions and interfaces (although I do once in a blue moon) and all my configuration is magically serialized into a class using json.net (sometimes using an XML serializer).
I don't quite understand what problem it solves. It looks like a way to say: "hi. When you run into this function, return an object that is of this type and uses these parameters/data."
But... why would I ever use that? Note I have never needed to use object as well, but I understand what that is for.
What are some real situations in either building a website or desktop application where one would use DI? I can come up with cases easily for why someone may want to use interfaces/virtual functions in a game, but it's extremely rare (rare enough that I can't remember a single instance) to use that in non-game code.
First, I want to explain an assumption that I make for this answer. It is not always true, but quite often:
Interfaces are adjectives; classes are nouns.
(Actually, there are interfaces that are nouns as well, but I want to generalize here.)
So, e.g. an interface may be something such as IDisposable, IEnumerable or IPrintable. A class is an actual implementation of one or more of these interfaces: List or Map may both be implementations of IEnumerable.
To get the point: Often your classes depend on each other. E.g. you could have a Database class which accesses your database (hah, surprise! ;-)), but you also want this class to do logging about accessing the database. Suppose you have another class Logger, then Database has a dependency to Logger.
So far, so good.
You can model this dependency inside your Database class with the following line:
var logger = new Logger();
and everything is fine. It is fine up to the day when you realize that you need a bunch of loggers: Sometimes you want to log to the console, sometimes to the file system, sometimes using TCP/IP and a remote logging server, and so on ...
And of course you do NOT want to change all your code (meanwhile you have gazillions of it) and replace all lines
var logger = new Logger();
by:
var logger = new TcpLogger();
First, this is no fun. Second, this is error-prone. Third, this is stupid, repetitive work for a trained monkey. So what do you do?
Obviously it's a quite good idea to introduce an interface ICanLog (or similar) that is implemented by all the various loggers. So step 1 in your code is that you do:
ICanLog logger = new Logger();
Now the type inference doesn't change type any more, you always have one single interface to develop against. The next step is that you do not want to have new Logger() over and over again. So you put the reliability to create new instances to a single, central factory class, and you get code such as:
ICanLog logger = LoggerFactory.Create();
The factory itself decides what kind of logger to create. Your code doesn't care any longer, and if you want to change the type of logger being used, you change it once: Inside the factory.
Now, of course, you can generalize this factory, and make it work for any type:
ICanLog logger = TypeFactory.Create<ICanLog>();
Somewhere this TypeFactory needs configuration data which actual class to instantiate when a specific interface type is requested, so you need a mapping. Of course you can do this mapping inside your code, but then a type change means recompiling. But you could also put this mapping inside an XML file, e.g.. This allows you to change the actually used class even after compile time (!), that means dynamically, without recompiling!
To give you a useful example for this: Think of a software that does not log normally, but when your customer calls and asks for help because he has a problem, all you send to him is an updated XML config file, and now he has logging enabled, and your support can use the log files to help your customer.
And now, when you replace names a little bit, you end up with a simple implementation of a Service Locator, which is one of two patterns for Inversion of Control (since you invert control over who decides what exact class to instantiate).
All in all this reduces dependencies in your code, but now all your code has a dependency to the central, single service locator.
Dependency injection is now the next step in this line: Just get rid of this single dependency to the service locator: Instead of various classes asking the service locator for an implementation for a specific interface, you - once again - revert control over who instantiates what.
With dependency injection, your Database class now has a constructor that requires a parameter of type ICanLog:
public Database(ICanLog logger) { ... }
Now your database always has a logger to use, but it does not know any more where this logger comes from.
And this is where a DI framework comes into play: You configure your mappings once again, and then ask your DI framework to instantiate your application for you. As the Application class requires an ICanPersistData implementation, an instance of Database is injected - but for that it must first create an instance of the kind of logger which is configured for ICanLog. And so on ...
So, to cut a long story short: Dependency injection is one of two ways of how to remove dependencies in your code. It is very useful for configuration changes after compile-time, and it is a great thing for unit testing (as it makes it very easy to inject stubs and / or mocks).
In practice, there are things you can not do without a service locator (e.g., if you do not know in advance how many instances you do need of a specific interface: A DI framework always injects only one instance per parameter, but you can call a service locator inside a loop, of course), hence most often each DI framework also provides a service locator.
But basically, that's it.
P.S.: What I described here is a technique called constructor injection, there is also property injection where not constructor parameters, but properties are being used for defining and resolving dependencies. Think of property injection as an optional dependency, and of constructor injection as mandatory dependencies. But discussion on this is beyond the scope of this question.
I think a lot of times people get confused about the difference between dependency injection and a dependency injection framework (or a container as it is often called).
Dependency injection is a very simple concept. Instead of this code:
public class A {
private B b;
public A() {
this.b = new B(); // A *depends on* B
}
public void DoSomeStuff() {
// Do something with B here
}
}
public static void Main(string[] args) {
A a = new A();
a.DoSomeStuff();
}
you write code like this:
public class A {
private B b;
public A(B b) { // A now takes its dependencies as arguments
this.b = b; // look ma, no "new"!
}
public void DoSomeStuff() {
// Do something with B here
}
}
public static void Main(string[] args) {
B b = new B(); // B is constructed here instead
A a = new A(b);
a.DoSomeStuff();
}
And that's it. Seriously. This gives you a ton of advantages. Two important ones are the ability to control functionality from a central place (the Main() function) instead of spreading it throughout your program, and the ability to more easily test each class in isolation (because you can pass mocks or other faked objects into its constructor instead of a real value).
The drawback, of course, is that you now have one mega-function that knows about all the classes used by your program. That's what DI frameworks can help with. But if you're having trouble understanding why this approach is valuable, I'd recommend starting with manual dependency injection first, so you can better appreciate what the various frameworks out there can do for you.
As the other answers stated, dependency injection is a way to create your dependencies outside of the class that uses it. You inject them from the outside, and take control about their creation away from the inside of your class. This is also why dependency injection is a realization of the Inversion of control (IoC) principle.
IoC is the principle, where DI is the pattern. The reason that you might "need more than one logger" is never actually met, as far as my experience goes, but the actually reason is, that you really need it, whenever you test something. An example:
My Feature:
When I look at an offer, I want to mark that I looked at it automatically, so that I don't forget to do so.
You might test this like this:
[Test]
public void ShouldUpdateTimeStamp
{
// Arrange
var formdata = { . . . }
// System under Test
var weasel = new OfferWeasel();
// Act
var offer = weasel.Create(formdata)
// Assert
offer.LastUpdated.Should().Be(new DateTime(2013,01,13,13,01,0,0));
}
So somewhere in the OfferWeasel, it builds you an offer Object like this:
public class OfferWeasel
{
public Offer Create(Formdata formdata)
{
var offer = new Offer();
offer.LastUpdated = DateTime.Now;
return offer;
}
}
The problem here is, that this test will most likely always fail, since the date that is being set will differ from the date being asserted, even if you just put DateTime.Now in the test code it might be off by a couple of milliseconds and will therefore always fail. A better solution now would be to create an interface for this, that allows you to control what time will be set:
public interface IGotTheTime
{
DateTime Now {get;}
}
public class CannedTime : IGotTheTime
{
public DateTime Now {get; set;}
}
public class ActualTime : IGotTheTime
{
public DateTime Now {get { return DateTime.Now; }}
}
public class OfferWeasel
{
private readonly IGotTheTime _time;
public OfferWeasel(IGotTheTime time)
{
_time = time;
}
public Offer Create(Formdata formdata)
{
var offer = new Offer();
offer.LastUpdated = _time.Now;
return offer;
}
}
The Interface is the abstraction. One is the REAL thing, and the other one allows you to fake some time where it is needed. The test can then be changed like this:
[Test]
public void ShouldUpdateTimeStamp
{
// Arrange
var date = new DateTime(2013, 01, 13, 13, 01, 0, 0);
var formdata = { . . . }
var time = new CannedTime { Now = date };
// System under test
var weasel= new OfferWeasel(time);
// Act
var offer = weasel.Create(formdata)
// Assert
offer.LastUpdated.Should().Be(date);
}
Like this, you applied the "inversion of control" principle, by injecting a dependency (getting the current time). The main reason to do this is for easier isolated unit testing, there are other ways of doing it. For example, an interface and a class here is unnecessary since in C# functions can be passed around as variables, so instead of an interface you could use a Func<DateTime> to achieve the same. Or, if you take a dynamic approach, you just pass any object that has the equivalent method (duck typing), and you don't need an interface at all.
You will hardly ever need more than one logger. Nonetheless, dependency injection is essential for statically typed code such as Java or C#.
And...
It should also be noted that an object can only properly fulfill its purpose at runtime, if all its dependencies are available, so there is not much use in setting up property injection. In my opinion, all dependencies should be satisfied when the constructor is being called, so constructor-injection is the thing to go with.
I think the classic answer is to create a more decoupled application, which has no knowledge of which implementation will be used during runtime.
For example, we're a central payment provider, working with many payment providers around the world. However, when a request is made, I have no idea which payment processor I'm going to call. I could program one class with a ton of switch cases, such as:
class PaymentProcessor{
private String type;
public PaymentProcessor(String type){
this.type = type;
}
public void authorize(){
if (type.equals(Consts.PAYPAL)){
// Do this;
}
else if(type.equals(Consts.OTHER_PROCESSOR)){
// Do that;
}
}
}
Now imagine that now you'll need to maintain all this code in a single class because it's not decoupled properly, you can imagine that for every new processor you'll support, you'll need to create a new if // switch case for every method, this only gets more complicated, however, by using Dependency Injection (or Inversion of Control - as it's sometimes called, meaning that whoever controls the running of the program is known only at runtime, and not complication), you could achieve something very neat and maintainable.
class PaypalProcessor implements PaymentProcessor{
public void authorize(){
// Do PayPal authorization
}
}
class OtherProcessor implements PaymentProcessor{
public void authorize(){
// Do other processor authorization
}
}
class PaymentFactory{
public static PaymentProcessor create(String type){
switch(type){
case Consts.PAYPAL;
return new PaypalProcessor();
case Consts.OTHER_PROCESSOR;
return new OtherProcessor();
}
}
}
interface PaymentProcessor{
void authorize();
}
** The code won't compile, I know :)
The main reason to use DI is that you want to put the responsibility of the knowledge of the implementation where the knowledge is there. The idea of DI is very much inline with encapsulation and design by interface.
If the front end asks from the back end for some data, then is it unimportant for the front end how the back end resolves that question. That is up to the requesthandler.
That is already common in OOP for a long time. Many times creating code pieces like:
I_Dosomething x = new Impl_Dosomething();
The drawback is that the implementation class is still hardcoded, hence has the front end the knowledge which implementation is used. DI takes the design by interface one step further, that the only thing the front end needs to know is the knowledge of the interface.
In between the DYI and DI is the pattern of a service locator, because the front end has to provide a key (present in the registry of the service locator) to lets its request become resolved.
Service locator example:
I_Dosomething x = ServiceLocator.returnDoing(String pKey);
DI example:
I_Dosomething x = DIContainer.returnThat();
One of the requirements of DI is that the container must be able to find out which class is the implementation of which interface. Hence does a DI container require strongly typed design and only one implementation for each interface at the same time. If you need more implementations of an interface at the same time (like a calculator), you need the service locator or factory design pattern.
D(b)I: Dependency Injection and Design by Interface.
This restriction is not a very big practical problem though. The benefit of using D(b)I is that it serves communication between the client and the provider. An interface is a perspective on an object or a set of behaviours. The latter is crucial here.
I prefer the administration of service contracts together with D(b)I in coding. They should go together. The use of D(b)I as a technical solution without organizational administration of service contracts is not very beneficial in my point of view, because DI is then just an extra layer of encapsulation. But when you can use it together with organizational administration you can really make use of the organizing principle D(b)I offers.
It can help you in the long run to structure communication with the client and other technical departments in topics as testing, versioning and the development of alternatives. When you have an implicit interface as in a hardcoded class, then is it much less communicable over time then when you make it explicit using D(b)I. It all boils down to maintenance, which is over time and not at a time. :-)
Quite frankly, I believe people use these Dependency Injection libraries/frameworks because they just know how to do things in runtime, as opposed to load time. All this crazy machinery can be substituted by setting your CLASSPATH environment variable (or other language equivalent, like PYTHONPATH, LD_LIBRARY_PATH) to point to your alternative implementations (all with the same name) of a particular class. So in the accepted answer you'd just leave your code like
var logger = new Logger() //sane, simple code
And the appropriate logger will be instantiated because the JVM (or whatever other runtime or .so loader you have) would fetch it from the class configured via the environment variable mentioned above.
No need to make everything an interface, no need to have the insanity of spawning broken objects to have stuff injected into them, no need to have insane constructors with every piece of internal machinery exposed to the world. Just use the native functionality of whatever language you're using instead of coming up with dialects that won't work in any other project.
P.S.: This is also true for testing/mocking. You can very well just set your environment to load the appropriate mock class, in load time, and skip the mocking framework madness.

Specifying which concrete type to retrieve

I am looking at structuremap as an IOC/DI tool. Looking at this example:
http://docs.structuremap.net/QuickStart.htm
The only thing that does not make sense is, if I have an interface and derive several concrete types from it, in the code:
public class ClassThatGetsAnIValidator
{
public void SaveObject(object objectToSave)
{
// Go get the proper IValidator from StructureMap
IValidator validator = ObjectFactory.GetInstance();
var notification = validator.Validate(objectToSave);
if (notification.IsValid())
{
// save the object
}
}
}
How do I know which validator I get? IE I may have an AlphaBetValidator, NumericValidator, etc, with different method bodys and so on.....
I think this is the point:
Registering "what" and "how" StructureMap should build or find those requested services (the tedious part, but it's gotten much better over the years)
Which I struggle to grasp.
Please help.
Thanks
From the documentation:
If there is only one Instance for a registered PluginType, that
Instance will be assumed to be the default for the PluginType.
Otherwise, if there is more than one Instance for a PluginType,
StructureMap must be explicitly told which Instance is the default,
otherwise the call to GetInstance() will throw an exception (202).
To resolve to a particular instance you could use the naming mechanism. From the same documentation page:
Sometimes it's advantageous to retrieve a "named" instance of a type.
Let's say that you're building a system that needs to connect to
interface with multiple external shipping systems. You've designed an
interface for your system called IShippingSystem that hides the
details of each external shipping behind adapters. The rest of your
code should only "know" how to interact with the IShippingSystem, but
at some point, some class needs to know how to select and retrieve the
proper instance of IShippingSystem. Before the advent of IoC
containers like StructureMap, you would have coded a Factory class and
possibly a Builder class by hand to do the construction. With
StructureMap, this code is simply a call to the
ObjectFactory.GetNamedInstance(Type, string) method.
IShippingService internationalService = ObjectFactory.GetNamedInstance<IShippingService>("International");
IShippingService domesticService = ObjectFactory.GetNamedInstance<IShippingService>("Domestic");

Is it possible to pass arguments to Symony2 container constructor

When creating an service container in Symfony2 you mostly pass "static" arguments (like other classes etc.) to its constructor.
However I'd like to create a factory and therefore I need to be able to pass an dynamic argument to the service constructor.
The examples I found ( e.g. http://symfony.com/doc/current/cookbook/service_container/factories.html) are all ending up using static arguments as argument.
But what do I have to do, if I want my factory to decide which object to return based on (for example) user input?
I have some problems understanding why service factory should not work on your case. Do you need to return different service class unrelated to each other?
What I see from the factory example is that you could do something like this:
class NewsletterFactory
{
public function __constructor(...)
{
// Receive arguments needed to create the service below
}
public function get()
{
// Say the variable $userInput exists and is derived from constructor
if ($userInput === 'string')
return new NewsletterManager($dynamicArgument1);
if ($userInput === 'integer')
return new AnotherNewsletterManager($dynamicArgument2);
return new DefaultNewsletterManager();
}
}
Now, if this doesn't fit your needs. You can also create a service say CustomFactory that returns what you need. What is returned is not directly a service, so you can do whatever you want. But this would prevent you from requesting the objects created by CustomFactory from the dependency container.
Similar to that is the FormFactory. It is the factory used to instantiate form type. But the FormFactory is more powerfull since it is coupled with a dependency injection tag and a compiler pass, which register each types into the dependency injection system so they can be retrieved on their own. I don't exactly all the internals of the Form component but I think it could solve your problem if other methods do not.
Regards,
Matt

What benefits does a DI container provide over a factory?

There are many discussions around here about this, but none seem to really answer the question.
I'm currently considering using the Symfony 2 service container. The more I look at it though, the more it seems like I could just do the same thing with a service factory. Consider the following example:
services.yml
services:
my_mailer:
class: Acme\Mailer
arguments: [sendmail]
newsletter_manager:
class: Acme\Newsletter\NewsletterManager
arguments: [#my_mailer]
Now to get a newsletter manager, I do something like:
// this has been configured with the above yml file
$serviceContainer = new ServiceContainer();
$newsletterManager = $serviceContainer->get("newsletter_manager");
However, consider the following factory style code:
class ServiceContainer
{
public function getMyMailer()
{
return new Acme\Mailer("sendmail");
}
public function getNewsletterManager()
{
return new Acme\Newsletter\NewsletterManager($this->getMyMailer());
}
}
And then using it:
$serviceContainer = new ServiceContainer();
$newsletterManager = $serviceContainer->getNewsletterManager();
Is there something I'm missing here? Because I don't really see the advantage to using a DI container if a factory can do all of that for me.
I have heard using factories causes your code to "depend on the factory". I either don't understand this argument or the person arguing against factories is confused. Only the top level class (the composition root) would have a reference to the factory, just like it would be the only one with the reference to the DI container.
Is there something I'm missing here? Because I don't really see the
advantage to using a DI container if a factory can do all of that for
me.
Yes - you are using your DI container using the Service Locator (anti-)pattern instead of injecting your dependencies into your classes. Your class should not have to reference your DI container at all.
Instead there should be just a single aggregate root where you create the container and resolve all dependencies. Once you have resolved your top level class instance all of its dependencies (and the dependencies of the dependencies and so on) are then resolved using the IoC container using the Hollywood Principle - when class instances are created all of its dependencies are passed in, the instance never asks for a dependency itself.

Resources