Collation STRENGTH and local language relation - localization

I have read the following from Collator's Javadoc.
"The exact assignment of strengths to language features is locale dependant. For example, in Czech, "e" and "f" are considered primary differences, while "e" and "ê" are secondary differences, "e" and "E" are tertiary differences and "e" and "e" are identical."
Does this mean that I should set the STRENGTH based on the language I am using? If so can someone suggest the defaults for the locales: us_en, us_es, ca_fr, spain_spanish, chile_spanish, portuguese

It really depends on what you're trying to do. The following is true for most (all?) languages that use the Latin alphabet:
Primary
Different: a, á, Á, b
Same: á, â
Same: a, A
Secondary
Different: a, á, Á, b
Different: á, â
Same: a, A
Tertiary
Different: a, á, Á, b
Different: á, â
Different: a, A
Identical
Also consider differences you can't see, for example between (accented A) and (A) + (accent)
There will be slight variations between languages, but in essence:
If you want case-sensitive comparison, use Tertiary.
For case-insensitive comparison, use either Primary or Secondary depending on whether you want á to be grouped with â.
Some of the collation rules are quite strange. a is different from á even in Primary, and á is different from Á even in Primary/Secondary. I don't know why; bug, maybe?
Who knows what happens in non-Latin languages.

Related

How to calculate Follow set of a production rule that has only ONE symbol on the right side

So i have this grammar :
S -> (D)
D -> EF
E -> a|b|S
F -> *D | +D | ε
First of all, books solution uses the P -> pBq , First(q) - {ε} is subset of FOLLOW(B) for the rule D -> EF but that rule has only 2 symbols do we assume ε infront of E (ε being the p in pBq)?
And secondly i can't understand how to calculate Follow(E).
FOLLOW(E) consists of every terminal symbol which can immediately follow E in some derivation step. That's the precise definition; it's not very complicated.
For a simple grammar, you should be able to figure out all the FOLLOW sets just be looking at the grammar and applying a little bit of common sense. It would probably be a good idea to do that, since it will give you a better idea of how the algorithm works.
As a side note, it's maybe worth mentioning that ε is not a thing. Or at least, it's not a grammar symbol. It's one of several conventions used to make the empty sequence visible, just like 0 is a way to make nothing visible. Sometimes that's useful, but it's important to not let it confuse you. (Abuse of notation is endemic in mathematics, which can be frustrating.)
So, what can follow E? E only appears in one place on the right-hand sdie of that grammar, in the production D → E F. So clearly any symbol which be the first symbol of F must be in FOLLOW(E). The symbols which could be at the start of F are + and *, since as mentioned, ε is not a grammar symbol. (Many definitions of FIRST allow ε to be a member of that set, along with any actual terminal symbol. That's an example of the abuse of notation I was talking about in the previous paragraph, since it makes it look like ε is a terminal symbol. But it isn't. It's nothing.)
F is what we call a "nullable" non-terminal, because it can derive the empty sequence (which was written as ε so that you can see it). In other words, it's possible for F to disappear completely in a derivation step. And if it does disappear, then E might be at the end of the production D → E F. If E is at the end of D, then it can be followed by anything which could follow D, which includes ). D can also appear at the end of a derivation of F, which means that F could be followed by anything which could follow F, a tautology which adds no information whatsoever.
So it's easy to see that FOLLOW(F) = {*, +, )}, and you can use that to check your understanding of any algorithm to compute follow sets.
Now, I don't know what book you are referring to (and it would have been courteous to mention that in your original question; sources should always be correctly cited). But the book I happen to have in front of me --the Dragon Book-- has a pretty similar algorithm. The Dragon book uses a simple convention for writing statements like that. Probably your book does, too, but it might not be the same convention. You should check what it says and make sure that you typed the copied statement correctly, respecting whatever formatting used to indicate what the symbols stand for.
In the Dragon book, some of the conventions include:
Lower case characters at the start of the alphabet. –a, b, c,…– are terminals (as well as actual symbols like * and +).
Upper case characters at the start of the alphabet. –A, B, C,…– are non-terminals.
S is the start symbol.
Upper case characters at the end of the alphabet. –X, Y, Z– stand for arbitrary grammar symbols (either terminals or non-terminals).
$ is the marker used to indicate the end of the input.
Lower-case Greek letters –α, β, γ,…– are possibly-empty strings of grammar symbols.
The phrase "possibly empty" is very important, so I'm repeating it.
With that convention, they write the rules for computing the FOLLOW set:
Place $ in FOLLOW(S).
For every production A → αBβ, copy everything from FIRST(&beta) except ε into FOLLOW(B).
If there is a production A → αB or a production A → αBβ where FIRST(β) contains ε, place everything in FOLLOW(A) into FOLLOW(B).
As mentioned above, α is a possibly-empty string of grammar symbols. So it might not be visible.
Keep doing steps 2 and 3 until no new symbols are added to any follow set.
I'm pretty sure that the algorithm in your book differs only in notation conventions.

How do you write an n-ary tree in postfix notation?

I am trying to understand this paper, Tree template matching in ranked ordered trees by pushdown automata. The first step is having the tree in postfix notation.
How do I take a tree such as this:
foo
bar
abc
def
bar
abc
a
b
a
b
c
d
e
def
abc
baz
bar
abc
a
b
c
abc
def
And write that in postfix notation?
It doesn't make a lot of sense. However, you can either use parentheses:
...(abc a b c)bar abc def)baz)foo
Or specify the number of operands with each operator:
... abc a b c bar4 abc def baz3 foo3
or even:
... abc0 a0 b0 c0 bar4 abc0 def0 baz3 foo3
In the terms of that paper, the tree you are asking about is impossible because you have nodes with the same "symbol" (name) with different numbers of children. The paper, however, is assuming that every symbol in the alphabet has a specified "arity" (the number of children for a node labelled with that symbol). Leaf symbols have arity 0, by the way.
This is (very briefly) mentioned in the Basic Definitions section at the beginning:
A ranked alphabet is a couple 𝒜 = (Σ, φ), where Σ is an alphabet and φ is a mapping . The arity (rank) of a symbol x ∈ Σ is φ(x).
In other words, there is a mathematical function which tells you how many children a labelled node will have, which you can use in the postfix notation to know how many subtrees precede that symbol. (Note also that 𝒜, which includes the arity function, is part of their definition of a PDA.)

Automata and Formal Languages

Showing that the reverse of a word for a regular language L is also regular
I am confused as to how I am to approach this question, i've been stuck for hours: For a word x, we use x^r to denote its reverse. For a language L, we use L^r to denote {x^r where x is in the set of L}. Show that if L is regular then so is L^r
If L is regular, then there exists some regular grammar which generates it. It can be always represented as either a left-regular grammar, or a right-regular grammar. Let's assume that it's left-regular grammar G_l(the proof for right-regular grammar is analogous).
This grammar has productions of two types; the terminating-type:
A -> a, where A is non-terminal and a is either a terminal or empty string (epsilon)
or the chaining type:
B -> Ca, where B, C are non-terminals and a is a terminal
When we apply reverse to a regular language, we basically also apply it to the tails of productions (since heads are just single non-terminals). It's going to be proved later on. So we get a new grammar G_r, with productions:
A -> a, where A is non-terminal and a is either a terminal or empty string (epsilon)
B -> aC, where B, C are non-terminals and a is a terminal
But hey, it's a right-regular grammar! So the language it accepts is also regular.
There is one thing to do - to show that reversing tails actually does the thing it's supposed to. We're going to prove it very simply:
If L contains \epsilon, then there is production 'S -> \epsilon' in G_l. Since we don't touch productions like that, it's also present in G_r.
If L contains a, a word composed of a single terminal, then it's similar to the above
If L contains aZ, where a is a terminal and Z is a word from the language constructed from chopping off the first terminals out of words in L, then L^r contains (because of changes to the chaining productions) (Z^r)a. Z is also a regular language, since it can be constructed by dropping the first "level" of left-productions from G_l, which leaves us with a regular grammar.
I hope it helped. There's also an arguably easier way of doing that by reversing edges of the relevant finite automata and changing accepting and entry states a bit.

Recognizing permutations of a finite set of strings in a formal grammar

Goal: find a way to formally define a grammar that recognizes elements from a set 0 or 1 times in any order. Subsequently, I want to parse it and generate an AST as well.
For example: Say the set of valid strings in my language is {A, B, C}. I want to define a grammar that recognizes all valid permutations of any number of those elements.
Syntactically valid strings would include:
(the empty string)
A,
B A, and
C A B
Syntactically invalid strings would include:
A A, and
B A C B
To be clear, defining all possible permutations explicitly in a CFG is unacceptable for my purposes, since larger sets would be impossible to maintain.
From what I understand, such a language fails the pumping lemma for context free languages, so the solution will not be context free or regular.
Update
What I'm after is called a "permutation language", which Benedek Nagy has done some theoretical work on as an extension to context free languages.
Regarding a parser generator, I've only found talk of implementing parsers with a permutation phase (link). Parsers evidently have an exponential lower bound on the size of resulting CFG, and I haven't found any parser generators that support it anyhow.
A sort-of solution to this problem was written in ANTLR. It uses semantic predicates to 'code around' the issue.
Assuming that the set of alternative strings is fixed and known in advance, say of size n, one can come up with a (non context-free) grammar of size O(n!). This is not asymptotically smaller than enumerating all permutations, so I suppose it cannot be considered a good solution. I believe that this grammar can be reformulated as a context-sensitive grammar (although in the form I'm suggesting below it is not).
For the example {a, b, c} mentioned in the question, one such grammar is the following. I'm using lower case letters for terminal symbols and upper case letters for non-terminals, as is customary. S is the initial non-terminal symbol.
S ::= XabcY
XabcY ::= aXbcY | bXacY | cXabY
XabY ::= ab | ba
XacY ::= ac | ca
XbcY ::= bc | cb
Non-terminals X and Y enclose the substring in the production which has not been finalized yet; this substring will eventually be replaced by a permutation of the terminals that are given between X and Y (in some arbitrary order).

Testing intersection of two regular languages

I want to test whether two languages have a string in common. Both of these languages are from a subset of regular languages described below and I only need to know whether there exists a string in both languages, not produce an example string.
The language is specified by a glob-like string like
/foo/**/bar/*.baz
where ** matches 0 or more characters, and * matches zero or more characters that are not /, and all other characters are literal.
Any ideas?
thanks,
mike
EDIT:
I implemented something that seems to perform well, but have yet to try a correctness proof. You can see the source and unit tests
Build FAs A and B for both languages, and construct the "intersection FA" AnB. If AnB has at least one accepting state accessible from the start state, then there is a word that is in both languages.
Constructing AnB could be tricky, but I'm sure there are FA textbooks that cover it. The approach I would take is:
The states of AnB is the cartesian product of the states of A and B respectively. A state in AnB is written (a, b) where a is a state in A and b is a state in B.
A transition (a, b) ->r (c, d) (meaning, there is a transition from (a, b) to (c, d) on symbol r) exists iff a ->r c is a transition in A, and b ->r d is a transition in B.
(a, b) is a start state in AnB iff a and b are start states in A and B respectively.
(a, b) is an accepting state in AnB iff each is an accepting state in its respective FA.
This is all off the top of my head, and hence completely unproven!
I just did a quick search and this problem is decidable (aka can be done), but I don't know of any good algorithms to do it. One is solution is:
Convert both regular expressions to NFAs A and B
Create a NFA, C, that represents the intersection of A and B.
Now try every string from 0 to the number of states in C and see if C accepts it (since if the string is longer it must repeat states at one point).
I know this might be a little hard to follow but this is only way I know how.

Resources