I bought transparent RF modules DRF1212D10 and UART-USB convertor board from Dorji applied technologies. However the USB convertor board uses CP2102 chips and the RF module needs the RTS pin of CP2102 to be controlled in order to work in normal mode. I have tried several serial port monitor software but there is no RTS control option in the software interface.
I really appreciate if somebody knows which software has such option. Thanks in advance!
I use PuTTY. There you can set Connection type to Serial and in Category view: Connection->Serial->Flow control to RTS/CTS.
Related
i'm a newbie with OpenWRT, and i'm working on OpenWRT project that has a Connection Load Balance feature: "when there are more than one access point (AP) in the network, network administrator may set up AP Load Balance to prevent that one of the AP gets overloaded, while others are still quite free. This help improve the Wi-Fi performance for all the wireless clients" (like Drayteks' APs). And I wonder if OpenWRT can support this feature? If not, can you tell me if any opensource software can do that (like OpenWiSP,...)? Thanks for your help and I appologize in advance for my English.
Is it possible to associate single wireless network interface controller (WNIC) with multiple Wireless Access Points (WAP) at a time? If not: why?
I've never heard about such a feature, so I assume it's technically impossible or fairly difficult and rarely implemented. Is it really that difficult/impossible to implement driver providing such a feature? Is it software or hardware difficulty?
I assume that TCP/IP protocols' specifications doesn't limit us at all because if I attach multiple WNICs to my computer, I can easily connect to multiple APs.
If it's software difficulty, than what's the actual problem? Does Linux/Windows kernel or WNIC's drivers limits it? Or maybe system libraries (like libc on GNU/Linux systems)?
If it's hardware difficulty, what actually limits us? Antennas? Using single radio frequency at a time? If yes, than why can't we implement frequency hopping (like Kismet does)? Because of lost packets during time spent on other channels? If yes, than can we associate WNIC with multiple routers working on the same channel (I know that channel overlapping is bad)?
Note: I'm not talking about dual band routers. I assume that we consider most common WNIC and AP which both work on 2.4GHz channels. If I have to put my question into OS context, than I choose GNU/Linux context.
Yes. The basic technique is that the client tells AP 'A' that it is going to sleep and then talks to AP 'B' while A is buffering frames for it.
Microsoft research worked this out a while ago:
http://research.microsoft.com/en-us/um/redmond/projects/virtualwifi/
Many low-level drivers support Wi-Fi interface virtualization (e.g. the BRCM wl command has options which support this).
Apple's AirDrop and MultiPeer features for OS X and iOS use a similar technique, but instead of talking to a 2nd AP they talk to a peer device.
I'm using a de0-nano board with an Altera Cyclone IV FPGA. My design has a hardware part and a software one. The hardware one is implementing a qsys project with a Nios II cpu that is running the software part. The qsys project has a dual-port memory. One port is connected to the cpu and the other is exported so the hardware can write to it.
My design is not working as I want. I don't know whether it's because of the hardware or the software so I'd like to read the memory by another way and I don't know which tool I can use.
If someone can help me...
I think you can use Insystem Memeory Content Editor in Quartus to read the content inside Block Ram.It will work from Cyclone III family. But no problem you are using Cyclone IV
If I was told I needed to create a driver for some product (say, a game controller), how would I go about creating one? Is this something you could do normally in C/C++?
And what about firmware for external deviced connect to USB? How is this created usually? Is this also done in C/C++, or some lower level language?
Thanks!
Device drivers for desktop computer operating systems are generally written in either C or C++. The operating system you would target will have some form of framework or device driver development environment. Often these development kits can be obtained free of charge.
There are books available for Windows, Linux, and MacOS X (and others) that detail the process of creating a device driver.
If your driver is related to a device on a specific hardware bus (PCI, PCI-X, USB, SCSI, SATA, etc.) you can also get books on that specific technology. An understanding of that hardware system can greatly facilitate the design of your driver.
Another good resource is the open source code for similar devices to yours. You can obtain that from the Linux kernel source or FreeBSD source and study how certain aspects of your type of device are implemented.
EDIT: I nearly forgot to mention that you will also need data sheets, schematics, and/or theory of operation information about the device itself.
I'll add to Amardeep's good answer with the following books that will help you think about the context device drivers operate in, and how they're structured:
Linux:
http://www.amazon.com/Understanding-Linux-Kernel-Third-Daniel/dp/0596005652
Windows:
http://www.amazon.com/Programming-Microsoft-Windows-Driver-Model/dp/0735618038/ref=sr_1_1?ie=UTF8&s=books&qid=1277439434&sr=1-1
Mac OS:
http://www.amazon.com/Mac-OS-Internals-Systems-Approach/dp/0321278542/ref=sr_1_1?ie=UTF8&s=books&qid=1277439467&sr=1-1
You do it in any language that can talk to the interface. If it requires poking ports or addresses directly then you use assembly or C. If there's a higher-level interface such as libusb then you can use almost any language you like.
We have a range of PC demonstration programs for our microcontroller products. The programs typically connect to a USB HID chip on the microcontroller board. The USB chip acts as a communications bridge, allowing the programs to communicate with the micros over SPI/I2C/UART. The programs can configure the micros, and get back status information to display to the user.
We are now looking to build some standalone demonstrations using single board PCs. We would like to reuse as much as possible of our existing demo app source code. Ideally, we could just run them as-is.
Does anybody have any advice on the best way forward? The basic options seem to be WinCE or XP Embedded boards. WinCE boards seem to pull less power, which would be an advantage from a battery life point of view.
Our existing demos are built either in C++ under Borland Builder, or in Delphi.
Thanks in advance.
EDIT: see my answer below with info from a board vendor.
Free Pascal/Lazarus can compile some forms of Delphi apps to WiNCE/arm. Even visual ones.
There isn't a Delphi version for WinCE, so you would need to rewrite the applications. The same applies for the Borland Builder's control libraries. Only if you have used plain Win32 API, you would be able to port your application to WinCE easily. You may also encounter problems with the hardware access part. The Serial Port driver may not work as is. Also, you need to find a WinCE board that can act as USB host and provides HID drivers (this isn't very common).
In conclusion, I believe that you would be better of with Windows XP Embedded boards. These should run your applications as they are.
As an update, and for future reference, I thought I'd post the results of our discussions with a WinCE board vendor here. Caveat: I haven't actually tried any of this.
The bottom line is that there isn't a straightforward way to do what we were hoping for (i.e., re-compile our existing demo applications to run under WinCE). The reason is that the generic HID drivers and standard APIs that exist in desktop flavours of Windows just aren't there in WinCE.
To talk to HID devices in WinCE you need to implement a custom HID driver. This needs to support an interface allowing user mode applications to communicate with the driver, and to construct HID reports to be sent to the physical device. As this interface would itself be custom, application code needs to be updated accordingly.
WinCE application development is generally done using Visual Studio and the Microsoft compilers. The approach recommended to us was:
Create a custom HID class driver. This could be based on, for instance, the Microsoft keyboard HID driver.
Create an API for talking to the driver.
Use .net to create our GUI applications, and use PInvoke to actually talk to the API.
The end result of all this head-scratching is that to avoid the time and learning curve associated with this approach, we're going to go for a board running XP. We can then use our existing demo applications straight out of box. The trade-off is that we'll have to live with substantially reduced battery life.